Previous |  Up |  Next

Article

Keywords:
linearization of nonlinear systems; input-output injection; exterior differentiation; I or O differential equation structure; observer synthesis
Summary:
The problem addressed in this paper is the linearization of nonlinear systems by generalized input-output (I/O) injection. The I/O injection (called completely generalized I/O injection) depends on a finite number of time derivatives of input and output functions. The practical goal is the observer synthesis with linear error dynamics. The method is based on the I/O differential equation structure. Thus, the problem is solved as a realization one. A necessary and sufficient condition is proposed through a constructive algorithm and is based on the exterior differentiation.
References:
[1] Bestle D., Zeitz M.: Canonical form observer design for nonlinear time varying systems. Internat. J. Control 38 (1983), 419–431 DOI 10.1080/00207178308933084 | MR 0708425
[2] Birk J., Zeitz M.: Extended Luenberger observers for nonlinear multivariable systems. Internat. J. Control 47 (1988), 1823–1836 DOI 10.1080/00207178808906138 | MR 0947071
[3] Chiasson J. N.: Nonlinear differential–geometric techniques for control of a series DC motor. IEEE Trans. Systems Technology 2 (1994), 35–42 DOI 10.1109/87.273108
[4] Diop S., Grizzle J. W., Moraal P. E., Stefanopoulou A.: Interpolation and numerical differentiation for observer design. In: Proc. of American Control Conference 94, Evanston 1994, pp. 1329–1333
[5] Fliess M.: Generalized controller canonical forms for linear and nonlinear dynamics. IEEE Trans. Automat. Control 35 (1990), 994–1001 DOI 10.1109/9.58527 | MR 1065035 | Zbl 0724.93010
[6] Glumineau A., Moog C. H., Plestan F.: New algebro–geometric conditions for the linearization by input–output injection. IEEE Trans. Automat. Control 41 (1996), 598–603 DOI 10.1109/9.489283 | MR 1385333 | Zbl 0851.93018
[7] Hammouri H., Gauthier J. P.: Bilinearization up to output injection. Systems Control Lett. 11 (1988), 139–149 DOI 10.1016/0167-6911(88)90088-6 | MR 0955483 | Zbl 0648.93024
[8] Keller H.: Nonlinear observer design by transformation into a generalized observer canonical form. Internat. J. Control 46 (1987), 1915–1930 DOI 10.1080/00207178708934024 | MR 0924264 | Zbl 0634.93012
[9] Krener A. J., Respondek W.: Nonlinear observers with linearizable error dynamics SIAM J. Control Optim. 23 (1985), 197–216 DOI 10.1137/0323016 | MR 0777456
[10] López-M. V., Glumineau A.: Further results on linearization of nonlinear systems by input output injection. In: Proc. of 36th IEEE Conference on Decision and Control, San Diego 1997
[11] Marino R.: Adaptive observers for single output nonlinear systems. IEEE Trans. Automat. Control 35 (1990), 1054–1058 DOI 10.1109/9.58536 | MR 1065044 | Zbl 0729.93016
[12] Marino R., Tomei P.: Dynamic output feedback linearization and global stabilization. Systems Control Lett. 17 (1991), 115–121 DOI 10.1016/0167-6911(91)90036-E | MR 1120756 | Zbl 0747.93069
[13] Phelps A. R.: On constructing nonlinear observers. SIAM J. Control Optim. 29 (1991), 516–534 DOI 10.1137/0329030 | MR 1089143 | Zbl 0738.93032
[14] Plestan F., Cherki B.: An observer for one flexible robot by an algebraic method. In: IFAC Workshop on New Trends in Design of Control Systems NTDCS’94, Smolenice 1994, pp. 41–46
[15] Plestan F., Glumineau A.: Linearization by generalized input–output injection. Systems Control Lett. 31 (1997), 115–128 DOI 10.1016/S0167-6911(97)00025-X | MR 1461807 | Zbl 0901.93013
[16] Proychev T. Ph., Mishkov R. L.: Transformation of nonlinear systems in observer canonical form with reduced dependency on derivatives of the input. Automatica 29 (1993), 495–498 DOI 10.1016/0005-1098(93)90145-J | MR 1211308 | Zbl 0772.93017
[17] Williamson D.: Observation of bilinear systems with application to biological systems. Automatica 13 (1977), 243–254 DOI 10.1016/0005-1098(77)90051-6
[18] Xia X. H., Gao W. B.: Nonlinear observers design by dynamic error linearization. SIAM J. Control Optim. 27 (1989), 1, 199–216 DOI 10.1137/0327011 | MR 0980230
Partner of
EuDML logo