[3] Chiasson J. N.:
Nonlinear differential–geometric techniques for control of a series DC motor. IEEE Trans. Systems Technology 2 (1994), 35–42
DOI 10.1109/87.273108
[4] Diop S., Grizzle J. W., Moraal P. E., Stefanopoulou A.: Interpolation and numerical differentiation for observer design. In: Proc. of American Control Conference 94, Evanston 1994, pp. 1329–1333
[6] Glumineau A., Moog C. H., Plestan F.:
New algebro–geometric conditions for the linearization by input–output injection. IEEE Trans. Automat. Control 41 (1996), 598–603
DOI 10.1109/9.489283 |
MR 1385333 |
Zbl 0851.93018
[9] Krener A. J., Respondek W.:
Nonlinear observers with linearizable error dynamics SIAM J. Control Optim. 23 (1985), 197–216
DOI 10.1137/0323016 |
MR 0777456
[10] López-M. V., Glumineau A.: Further results on linearization of nonlinear systems by input output injection. In: Proc. of 36th IEEE Conference on Decision and Control, San Diego 1997
[14] Plestan F., Cherki B.: An observer for one flexible robot by an algebraic method. In: IFAC Workshop on New Trends in Design of Control Systems NTDCS’94, Smolenice 1994, pp. 41–46
[18] Xia X. H., Gao W. B.:
Nonlinear observers design by dynamic error linearization. SIAM J. Control Optim. 27 (1989), 1, 199–216
DOI 10.1137/0327011 |
MR 0980230