[1] Al–Saggaf U. M., Franklin G. F.:
An error bound for a discrete reduced order model of a linear multivariable system. IEEE Trans. Automat. Control AC–32 (1987), 9, 815–819
Zbl 0622.93021
[2] Bittanti S.:
Deterministic and stochastic linear periodic systems. In: Time Series and Linear Systems (S. Bittanti, ed.), Springer–Verlag, Berlin 1986
MR 0897824
[3] Bolzern P., Colaneri P.: Existence and uniqueness conditions for the periodic solutions of the discrete–time periodic Lyapunov equations. In: Proc. of 25th Conference on Decision and Control, Athens 1986, pp. 1439–1443
[5] Colaneri P., Longhi S.: The lifted and cyclic reformulations in the minimal realization of linear discrete–time periodic systems. In: Proc. of the 1st IFAC Workshop on New Trends in Design of Control Systems, Smolenice 1994, pp. 329–334
[7] Evans D. S.:
Finite–dimensional realizations of discrete–time weighting patterns. SIAM J. Appl. Math. 22 (1972), 45–67
DOI 10.1137/0122006 |
MR 0378915
[9] Fortuna L., Nunnari G., Gallo A.: Model Order Reduction Techniques with Applications in Electrical Engineering. Springer–Verlag, Berlin 1992
[10] Glover K.:
All optimal Hankel–norm approximation of linear multivariable systems and their $L^\infty $–errors bounds. Internat. J. Control 39 (1984), 6, 1115–1193
DOI 10.1080/00207178408933239 |
MR 0748558
[11] Gohberg I., Kaashoek M. A., Lerer L.:
Minimality and realization of discrete time–varying systems. Oper. Theory: Adv. Appl. 56 (1992), 261–296
MR 1173922 |
Zbl 0242.93024
[13] Grasselli O. M., Longhi S.:
Zeros and poles of linear periodic discrete–time systems. Circuits Systems Signal Process. 7 (1988), 361–380
MR 0962108
[15] Grasselli O. M., Longhi S.:
The geometric approach for linear periodic discrete–time systems. Linear Algebra Appl. 158 (1991), 27–60
MR 1126434 |
Zbl 0758.93044
[16] Gree M., Limebeer D. J. N.: Linear Robust Control. Prentice Hall, Englewood Cliffs, N. J. 1995
[17] Mayer R. A., Burrus C. S.:
A unified analysis of multirate and periodically time–varying digital filters. Trans. Ccts Syst. CSA–22 (1975), 162–168
MR 0392090
[18] Moore B. C.:
Principal component analysis in linear systems: controllability, observability and modal reduction. Trans. Automat. Control AC–26 (1981), 17–32
DOI 10.1109/TAC.1981.1102568 |
MR 0609248
[19] Park B., Verriest E. I.:
Canonical forms on discrete linear periodically time–varying systems and a control application. In: Proc. of the 28th IEEE Conference on Decision and Control, Tampa 1989, pp. 1220–1225
MR 1038997
[21] Salomon G., Zhou K., Wu E.: A new balanced realization and model reduction method for unstable systems. In: Proc. of 14th IFAC World Congress, Beijing 1999, vol. D, pp. 123–128
[22] Shokoohi S., Silverman L. M., Dooren P. Van:
Linear time–variable systems: balancing and model reduction. Trans. Automat. Control AC-28 (1983), 8, 810–822
MR 0717839
[25] Xie B., Aripirala R. K. A. V., Syrmos V. L.: Model reduction of linear discrete–time periodic systems using Hankel–norm approximation. In: Proc. of IFAC 13th World Congress, San Francisco, 1996, pp. 245–250