Previous |  Up |  Next

Article

Keywords:
algebraic output feedback control; disturbance decoupling; dual-lattice structures; algebraic output feedback
Summary:
The purpose of this paper is to derive constructive necessary and sufficient conditions for the problem of disturbance decoupling with algebraic output feedback. Necessary and sufficient conditions have also been derived for the same problem with internal stability. The same conditions have also been expressed by the use of invariant zeros. The main tool used is the dual- lattice structures introduced by Basile and Marro [R4].
References:
[1] Anderson B. D. O.: A note on transmission zeros of a transfer function matrix. IEEE Trans. Automat. Control 21 (1976), 589–591 DOI 10.1109/TAC.1976.1101268 | MR 0444151 | Zbl 0332.93025
[2] Basile G., Marro G.: On the observability of linear time–invariant systems with unknown inputs. J. Optim. Theory Appl. 3 (1969), 6, 410–415 DOI 10.1007/BF00929356 | MR 0247890 | Zbl 0165.10203
[3] Basile G., Marro G.: L’invarianza rispetto ai disturbi studiata nello spazio degli stati. Rendiconti della LXX Riunione Annuale AEI, paper 1-4-01, Rimini, Italy 1969
[4] Basile G., Marro G.: Controlled and Conditioned Invariants in Linear System Theory. Prentice Hall, New Jersey 1992 MR 1149379 | Zbl 0758.93002
[5] Basile G., Marro G., Piazzi A.: A new solution to the disturbance localization problem with stability and its dual. In: Proceedings of the ’84 International AMSE Conference on Modelling and Simulation, Athens 1984, vol. 1, 2, pp. 19–27
[6] Chen B. M.: Solvability conditions for disturbance decoupling problems with static measurement feedback. Internat. J. Control 68 (1976), 1, 51–60 DOI 10.1080/002071797223721 | MR 1687550
[7] Imai H., Akashi H.: Disturbance localization and pole shifting by dynamic compensation. IEEE Trans. Automat. Control AC-26 (1981), 1, 226–235 DOI 10.1109/TAC.1981.1102550 | MR 0609262 | Zbl 0464.93045
[8] Piazzi A., Marro G.: The role of invariant zeros in multivariable system stability. In: Proceedings of the 1991 European Control Conference, Grenoble 1991
[9] Rosenbrock H. H.: State–Space and Multivariable Theory. Wiley, New York 1970 MR 0325201 | Zbl 0246.93010
[10] Willems J. C., Commault C.: Disturbance decoupling by measurement feedback with stability or pole placement. SIAM J. Control Optim. 19 (1981), 4, 490–504 DOI 10.1137/0319029 | MR 0618240 | Zbl 0467.93036
[11] Wonham W. M., Morse A. S.: Decoupling and pole assignment in linear multivariable systems: a geometric approach. SIAM J. Control 8 (1970), 1, 1–18 DOI 10.1137/0308001 | MR 0270771 | Zbl 0206.16404
Partner of
EuDML logo