Previous |  Up |  Next

Article

Keywords:
mathematical modeling; left ventricular assist system; time-varying capacitor; cardiovascular model; pressure-volume relationship; pump cycle; blood pump
Summary:
A mathematical model describing the pressure-volume relationship of the Novacor left ventricular assist system (LVAS) was developed. The model consisted of lumped resistance, capacitance, and inductance elements with one time-varying capacitor to simulate the cyclical pressure generation of the system. The ejection and filling portions of the pump cycle were modeled with two separate functions. The corresponding model parameters were estimated by least squares fit to experimental data obtained in the laboratory. The model performed well at simulating pump pressure of operation throughout the full cycle. Computer simulation of the pump with a cardiovascular model demonstrated the interaction between the LVAS and the cardiovascular system. This model can be used to incorporate on-line cardiovascular parameter estimation and to design a new controller for the LVAS.
References:
[1] Co., Baxter Healthcare, Division, Novacor: Novacor N100 Left Ventricular Assist System Operator’s Manual. Corporation Internal Manual (Unpublished), 1991
[2] Breitenstein D. S.: Cardiovascular Modeling: The Mathematical Expression of Blood Circulation. M.S. Thesis, Univeristy of Pittsburgh, 1993
[3] Devore J. L.: Probability and Statistics for Engineering and Sciences. Third edition. Brooks/Cole Publishing Company, Pacific Grove, 1991, pp. 466–468
[4] Franklin G. F., Powell J. D., Emami–Naeini, Abbas: Feedback Control of Dynamic Systems. Addison–Wesley, New York 1988, pp. 49–68
[5] Hogness J. R., Antwerp M. Van, eds.: The Artificial Heart: Prototypes, Policies, and Patients. National Academy Press, Washington 1991
[6] Lewis F. L.: Optimal Control. Wiley, New York 1986, pp. 345–346 MR 0833285
[7] More J. J.: The Levenburg–Marquardt algorithm: Implementation and theory. Numerical analysis (G. A. Watson ed., Lecture Notes in Mathematics 630). Springer–Verlag, Berlin pp. 269–312 MR 0483445
[8] Oppenheim A. V., Schafer R. W.: Discrete–Time Signal Processing. Prentice-Hall, Englewood Cliffs, NJ 1989, pp. 203–204 Zbl 0676.42001
[9] Portner P. M., LaForge D. H., Oyer P. E., Greene G. F., Jassawalla J. S., Ream A. K., Miller P. J., Shumway N. E., Chen H.: An alternative in end–stage heart disease: Long–term ventricular assistance. Heart Transplantation 3 (1983), 47–59
[10] Spyker D. A.: Simulation in the analysis and control of a cardio–circulatory assist device. Simulation 15 (1970), 196–205 DOI 10.1177/003754977001500503
[11] Unger F., ed.: Assisted Circulation 2. Springer, New York 1984, pp. 115–141
[12] Williams J. L.: Load–sensitive Mock Circulatory System for Left Ventricular Assist Device Controller Development and Evaluation. M.S. Thesis, University of Pittsburgh, 1995
[13] Yu Y.–C., Antaki J. F., Boston J. R., Simaan M., Miller P. J.: Mathematical model of pulsatile blood pump for LVAS control. In: Proc. of American Control Conf., Albuquerque 1997, vol. 6, pp. 3709–3713
[14] Yu Y.–C., Boston J. R., Simaan M., Antaki J. F.: Identification scheme for cardiovascular parameter estimation. In: Preprints of IFAC 13th World Congress, San Francisco 1996, vol. B, pp. 417–422
[15] Yu Y.–C., Boston J. R., Simaan M., Antaki J. F.: Estimation of systemic vascular bed parameters for artificial heart control. IEEE Trans. Automat. Control 43 (1998), 765–778 DOI 10.1109/9.679017
Partner of
EuDML logo