Previous |  Up |  Next

Article

Keywords:
statistical inference
Summary:
The approach introduced in Janžura [Janzura 1997] is further developed and the asymptotic Rényi distances are studied mostly from the point of their monotonicity properties. The results are applied to the problems of statistical inference.
References:
[1] Csiszár I.: Information–type measures of difference of probability distributions and indirect observations. Stud. Sci. Math. Hungar. 2 (1967), 299–318 MR 0219345 | Zbl 0157.25802
[2] Dembo A., Zeitouni O.: Large Deviations Techniques and Applications. Jones and Bartlett Publishers, Boston 1993 MR 1202429 | Zbl 0896.60013
[3] Georgii H. O.: Gibbs Measures and Place Transitions. De Gruyter, Berlin 1988 MR 0956646
[4] Janžura M.: Large deviations theorem for Gibbs random fields. In: Proc. 5th Pannonian Symp. on Math. Statist. (W. Grossmann, J. Mogyorodi, I. Vincze and W. Wertz, eds.), Akadémiai Kiadó, Budapest 1987, pp. 97–112 MR 0956688
[5] Janžura M.: Asymptotic behaviour of the error probabilities in the pseudo–likelihood ratio test for Gibbs–Markov distributions. In: Asymptotic Statistics (P. Mandl and M. Hušková, eds.), Physica–Verlag 1994, pp. 285–296 MR 1311947
[6] Janžura M.: On the concept of asymptotic Rényi distances for random fields. Kybernetika 5 (1999), 3, 353–366
[7] Liese F., Vajda I.: Convex Statistical Problems. Teubner, Leipzig 1987 MR 0926905
[8] Perez A.: Risk estimates in terms of generalized $f$–entropies. In: Proc. Coll. on Inform. Theory (A. Rényi, ed.), Budapest 1968 MR 0263542
[9] Rényi A.: On measure of entropy and information. In: Proc. 4th Berkeley Symp. Math. Statist. Prob., Univ of Calif. Press, Berkeley 1961, Vol. 1, pp. 547–561 MR 0132570
[10] Vajda I.: On the $f$–divergence and singularity of probability measures. Period. Math. Hungar. 2 (1972), 223–234 DOI 10.1007/BF02018663 | MR 0335163 | Zbl 0248.62001
[11] Vajda I.: The Theory of Statistical Inference and Information. Kluwer, Dordrecht – Boston – London 1989
[12] Younès L.: Parametric inference for imperfectly observed Gibbsian fields. Probab. Theory Related Fields 82 (1989), 625–645 DOI 10.1007/BF00341287 | MR 1002904
Partner of
EuDML logo