[1] Csiszár I.:
Information–type measures of difference of probability distributions and indirect observations. Stud. Sci. Math. Hungar. 2 (1967), 299–318
MR 0219345 |
Zbl 0157.25802
[2] Dembo A., Zeitouni O.:
Large Deviations Techniques and Applications. Jones and Bartlett Publishers, Boston 1993
MR 1202429 |
Zbl 0896.60013
[3] Georgii H. O.:
Gibbs Measures and Place Transitions. De Gruyter, Berlin 1988
MR 0956646
[4] Janžura M.:
Large deviations theorem for Gibbs random fields. In: Proc. 5th Pannonian Symp. on Math. Statist. (W. Grossmann, J. Mogyorodi, I. Vincze and W. Wertz, eds.), Akadémiai Kiadó, Budapest 1987, pp. 97–112
MR 0956688
[5] Janžura M.:
Asymptotic behaviour of the error probabilities in the pseudo–likelihood ratio test for Gibbs–Markov distributions. In: Asymptotic Statistics (P. Mandl and M. Hušková, eds.), Physica–Verlag 1994, pp. 285–296
MR 1311947
[6] Janžura M.: On the concept of asymptotic Rényi distances for random fields. Kybernetika 5 (1999), 3, 353–366
[7] Liese F., Vajda I.:
Convex Statistical Problems. Teubner, Leipzig 1987
MR 0926905
[8] Perez A.:
Risk estimates in terms of generalized $f$–entropies. In: Proc. Coll. on Inform. Theory (A. Rényi, ed.), Budapest 1968
MR 0263542
[9] Rényi A.:
On measure of entropy and information. In: Proc. 4th Berkeley Symp. Math. Statist. Prob., Univ of Calif. Press, Berkeley 1961, Vol. 1, pp. 547–561
MR 0132570
[11] Vajda I.: The Theory of Statistical Inference and Information. Kluwer, Dordrecht – Boston – London 1989
[12] Younès L.:
Parametric inference for imperfectly observed Gibbsian fields. Probab. Theory Related Fields 82 (1989), 625–645
DOI 10.1007/BF00341287 |
MR 1002904