Previous |  Up |  Next

Article

Keywords:
design problem; parameter uncertainty; linear systems; stabilization; algebraic Riccati equations; $H_\infty$ output feedback control
Summary:
The robust and reliable $H_{\infty }$ output feedback controller design problem is investigated for uncertain linear systems with actuator failures within a prespecified subset of actuators. The uncertainty considered here is time- varying norm-bounded parameter uncertainty in the state matrix. The output of a faulty actuator is assumed to be any arbitrary energy-bounded signal. An observer-based output feedback controller design is presented which stabilizes the plant and guarantees an $H_{\infty }$-norm bound on attenuation of augmented disturbances, for all admissible uncertainties as well as actuator failures. The construction of the observer-based output feedback control law requires the positive-definite solutions of two algebraic Riccati equations. The result can be regarded as an extension of existing results on robust $H_{\infty }$ control and reliable $H_{\infty }$ control of uncertain linear systems.
References:
[1] Khargonekar P. P., Petersen I. R., Zhou K.: Robust stabilization of uncertain linear systems: Quadratic stabilization and $H_{\infty }$ control theory. IEEE Trans. Automat. Control 35 (1990), 356–361 DOI 10.1109/9.50357 | MR 1044036
[2] Veillette R. J., Medanic J. V., Perkins W. R.: Robust stabilization and disturbance rejection for systems with structured uncertainty. In: Proc. 28th IEEE Conf. on Decision and Control, Tampa FL 1989, pp. 934–941 MR 1038980
[3] Veillette R. J., Medanic J. V., Perkins W. R.: Design of reliable control systems. IEEE Trans. Automat. Control 37 (1992), 290–304 DOI 10.1109/9.119629 | MR 1148712 | Zbl 0745.93025
[4] Xie L., Souza C. E. de: Robust $H_{\infty }$ control for a class of uncertain linear time-invariant systems. IEE Proc. D 138 (1991), 479–483 DOI 10.1049/ip-d.1991.0066
[5] Xie L., Souza C. E. de: Robust $H_{\infty }$ control for linear systems with norm–bounded time–varying uncertainty. IEEE Trans. Automat. Control 37 (1992), 1188–1191 DOI 10.1109/9.151101 | MR 1178590
[6] Zhou K., Khargonekar P. P.: Robust stabilization of linear systems with norm–bounded time–varying uncertainty. Systems Control Lett. 10 (1988), 17–20 DOI 10.1016/0167-6911(88)90034-5 | MR 0920801 | Zbl 0634.93066
Partner of
EuDML logo