Previous |  Up |  Next

Article

Title: State observers for nonlinear systems with smooth/bounded input (English)
Author: Germani, Alfredo
Author: Manes, Costanzo
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 35
Issue: 4
Year: 1999
Pages: [393]-413
Summary lang: English
.
Category: math
.
Summary: It is known that for affine nonlinear systems the drift-observability property (i. e. observability for zero input) is not sufficient to guarantee the existence of an asymptotic observer for any input. Many authors studied structural conditions that ensure uniform observability of nonlinear systems (i. e. observability for any input). Conditions are available that define classes of systems that are uniformly observable. This work considers the problem of state observation with exponential error rate for smooth nonlinear systems that meet or not conditions of uniform observability. In previous works the authors showed that drift-observability together with a smallness condition on the input is sufficient to ensure existence of an exponential observer. Here it is shown that drift- observability implies a kind of local uniform observability, that is observability for sufficiently small and smooth input. For locally uniformly observable systems two observers are presented: an exponential observer that uses derivatives of the input functions; an observer that does not use input derivatives and ensures exponential decay of the observation error below a prescribed level (high-gain observer). The construction of both observers is straightforward. Moreover the state observation is provided in the original coordinate system. Simulation results close the paper. (English)
Keyword: uniform observability
Keyword: drift-observability
Keyword: affine nonlinear system
MSC: 93B07
MSC: 93C10
idZBL: Zbl 1274.93118
idMR: MR1723526
.
Date available: 2009-09-24T19:26:47Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135297
.
Reference: [1] Besancon G., Hammouri H.: On uniform observation of nonuniformly observable systems.Systems Control Lett. 29 (1996), 9–19 Zbl 0866.93013, MR 1416747, 10.1016/0167-6911(96)00043-6
Reference: [2] Ciccarella G., Mora M. Dalla, Germani A.: A Luenberger–like observer for nonlinear systems.Internat. J. Control 57 (1993), 3, 537–556 MR 1205006, 10.1080/00207179308934406
Reference: [3] Mora M. Dalla, Germani A., Manes C.: A state observer for nonlinear dynamical systems.Nonlinear Anal.: Theory, Methods Appl. 30 (1997), 7, 4485–4496 MR 1603593, 10.1016/S0362-546X(97)00184-3
Reference: [4] Mora M. Dalla, Germani A., Manes C.: Exponential Observer for Smooth Nonlinear Systems.Internal Report R. 96-11 of Dept. of Electrical Eng., Univ. of L’Aquila, 1996. Submitted for publication
Reference: [5] Esfandiari F., Khalil H. K.: Output feedback stabilization of fully linearizable systems.Internat. J. Control 56 (1992), 5, 1007–1037 Zbl 0762.93069, MR 1187838, 10.1080/00207179208934355
Reference: [6] Gauthier J. P., Bornard G.: Observability for any $u(t)$ of a class of nonlinear systems.IEEE Trans. Automat. Control 26 (1981), 4, 922–926 Zbl 0553.93014, MR 0635851, 10.1109/TAC.1981.1102743
Reference: [7] Gauthier J. P., Hammouri H., Othman S.: A simple observer for nonlinear systems: application to bioreactors.IEEE Trans. Automat. Control 37 (1992), 875–880 MR 1164571, 10.1109/9.256352
Reference: [8] Gauthier J. P., Kupka I.: Observability and observers for nonlinear systems.SIAM J. Control Optim. 32 (1994), 4, 975–994 Zbl 0802.93008, MR 1280224, 10.1137/S0363012991221791
Reference: [9] Isidori A.: Nonlinear Control Systems.Springer–Verlag, Berlin 1989 Zbl 0931.93005, MR 1015932
Reference: [10] Khalil H. K., Esfandiari F.: Semiglobal stabilization of a class of nonlinear systems using output feedback.IEEE Trans. Automat. Control 38 (1993), 9, 1412–1415 Zbl 0787.93079, MR 1240837, 10.1109/9.237658
Reference: [11] Krener A., Respondek W.: Nonlinear observers with linearizable error dynamics.SIAM J. Control Optim. 23 (1985) 197–216 Zbl 0569.93035, MR 0777456, 10.1137/0323016
Reference: [12] Raghavan S., Hedrick J. K.: Observer design for a class of nonlinear systems.Internat. J. Control 59 (1994), 2, 515–528 Zbl 0802.93007, MR 1261285, 10.1080/00207179408923090
Reference: [13] Teel A., Praly L.: Global stabilizability and observability imply semi–global stabilizability by output feedback.Systems Control Lett. 22 (1994), 313–325 Zbl 0820.93054, MR 1274906, 10.1016/0167-6911(94)90029-9
Reference: [14] Thau F. E.: Observing the state of nonlinear dynamical systems.Internat. J. Control 17 (1973), 471–479 10.1080/00207177308932395
Reference: [15] Tornambè A.: High–gain observers for non–linear systems.Internat. J. Systems Sci. 23 (1992), 9, 1475–1489 Zbl 0768.93013, MR 1181806
Reference: [16] Tsinias J.: Observer design for nonlinear systems.Systems Control Lett. 13 (1989), 135–142 Zbl 0684.93006, MR 1014239, 10.1016/0167-6911(89)90030-3
Reference: [17] Tsinias J.: Further results on the observer design problem.Systems Control Lett. 14 (1990), 411–418 Zbl 0698.93004, MR 1057160, 10.1016/0167-6911(90)90092-9
.

Files

Files Size Format View
Kybernetika_35-1999-4_1.pdf 2.498Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo