Article
Summary:
The asymptotic Rényi distances are explicitly defined and rigorously studied for a convenient class of Gibbs random fields, which are introduced as a natural infinite-dimensional generalization of exponential distributions.
References:
[1] Csiszár I.:
Information–type measures of difference of probability distributions and indirect observations. Stud. Sci. Math. Hungar. 2 (1967), 299–318
MR 0219345 |
Zbl 0157.25802
[2] Georgii H. O.:
Gibbs Measures and Place Transitions. de Gruyter, Berlin 1988
MR 0956646
[3] Liese F., Vajda I.:
Convex Statistical Problems. Teubner, Leipzig 1987
MR 0926905
[4] Perez A.:
Risk estimates in terms of generalized $f$–entropies. In: Proc. Colloq. Inform. Theory (A. Rényi, ed.), Budapest 1968
MR 0263542
[5] Rényi A.:
On measure of entropy and information. In: Proc. 4th Berkeley Symp. Math. Statist. Probab., Univ. of Calif. Press, Berkeley 1961, Vol. 1, pp. 547–561
MR 0132570
[7] Vajda I.: The Theory of Statistical Inference and Information. Kluwer, Dordrecht – Boston – London 1989