Previous |  Up |  Next

Article

Keywords:
spectral element method; Euler equation; multi-domain approach
Summary:
A method to approximate the Euler equations is presented. The method is a multi-domain approximation, and a variational form of the Euler equations is found by making use of the divergence theorem. The method is similar to that of the Discontinuous-Galerkin method of Cockburn and Shu, but the implementation is constructed through a spectral, multi-domain approach. The method is introduced and is shown to be a conservative scheme. A numerical example is given for the expanding flow around a point source as a comparison with the method proposed by Kopriva.
References:
[1] Bassi F., Rebay S.: A high–order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131 (1997), 267–279, 1997 DOI 10.1006/jcph.1996.5572 | MR 1433934 | Zbl 0871.76040
[2] Cockburn B., Shu C. W.: TVB Runga–Kutta local projection discontinuous Galerkin finite–element method for conservation laws II: General framework. Math. Comp. 52 (1989) MR 0983311
[3] Cockburn B., Shu C. W.: TVB Runga–Kutta local projection discontinuous Galerkin finite–element method for conservation laws III: One dimensional systems. J. Comput. Phys. 84 (1989), 90 DOI 10.1016/0021-9991(89)90183-6 | MR 1015355
[4] Cockburn B., Shu C. W.: TVB Runga–Kutta local projection discontinuous Galerkin finite–element method for conservation laws IV: The multidimensional case. Math. Comp. 54 (1990) MR 1010597
[5] Courant R., Friedrichs K. O.: Supersonic Flow and Shock Waves. Applied Mathematical Sciences. Springer–Verlag, New York 1948 MR 0029615 | Zbl 0365.76001
[6] Gordon W. J., Hall C. A.: Transfinite element methods: Blending–function interpolation over arbitrary curved element domains. Numer. Math. 21 (1973), 109–129 DOI 10.1007/BF01436298 | MR 0381234 | Zbl 0254.65072
[7] Harten A., Lax P. D., Leer B. Van: On upstream differencing and Godunov–type schemes for hyperbolic conservation laws. SIAM Review 25 (1983), 1, 35–61 DOI 10.1137/1025002 | MR 0693713
[8] Hesthaven J. S.: A stable penalty method for the compressible Navier–Stokes equations II: One dimensional domain decomposition schemes, to appea.
[9] Hesthaven J. S.: A stable penalty method for the compressible Navier–Stokes equations III: Multi dimensional domain decomposition schemes, to appea.
[10] Hesthaven J. S., Gottlieb D.: A stable penalty method for the compressible Navier–Stokes equations. I. Open boundary conditions. SIAM J. Sci. Statist. Comput 17 (1996), 3, 579–612 DOI 10.1137/S1064827594268488 | MR 1384253 | Zbl 0853.76061
[11] Kopriva D. A.: A Conservative Staggered Grid Chebychev Multi–Domain Method for Compressible Flows. II: A Semi–Structured Method. NASA Contractor Report ICASE Report No. 96-15, ICASE, NASA Langley Research Center, 1996
[12] Kopriva D. A., Kolias J. H.: A conservative staggered grid Chebychev multi–domain method for compressible flows. J. Comput. Phys. 125 (1996), 1, 244–261 DOI 10.1006/jcph.1996.0091 | MR 1381812
[13] Rumsey C., Leer B. van, Roe P. L.: A multidimensional flux function with applications to the Euler and Navier–Stokes equations. J. Comput. Phys. 105 (1993), 306–323 DOI 10.1006/jcph.1993.1077 | MR 1210411
Partner of
EuDML logo