[1] Bassi F., Rebay S.:
A high–order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131 (1997), 267–279, 1997
DOI 10.1006/jcph.1996.5572 |
MR 1433934 |
Zbl 0871.76040
[2] Cockburn B., Shu C. W.:
TVB Runga–Kutta local projection discontinuous Galerkin finite–element method for conservation laws II: General framework. Math. Comp. 52 (1989)
MR 0983311
[3] Cockburn B., Shu C. W.:
TVB Runga–Kutta local projection discontinuous Galerkin finite–element method for conservation laws III: One dimensional systems. J. Comput. Phys. 84 (1989), 90
DOI 10.1016/0021-9991(89)90183-6 |
MR 1015355
[4] Cockburn B., Shu C. W.:
TVB Runga–Kutta local projection discontinuous Galerkin finite–element method for conservation laws IV: The multidimensional case. Math. Comp. 54 (1990)
MR 1010597
[5] Courant R., Friedrichs K. O.:
Supersonic Flow and Shock Waves. Applied Mathematical Sciences. Springer–Verlag, New York 1948
MR 0029615 |
Zbl 0365.76001
[7] Harten A., Lax P. D., Leer B. Van:
On upstream differencing and Godunov–type schemes for hyperbolic conservation laws. SIAM Review 25 (1983), 1, 35–61
DOI 10.1137/1025002 |
MR 0693713
[8] Hesthaven J. S.: A stable penalty method for the compressible Navier–Stokes equations II: One dimensional domain decomposition schemes, to appea.
[9] Hesthaven J. S.: A stable penalty method for the compressible Navier–Stokes equations III: Multi dimensional domain decomposition schemes, to appea.
[11] Kopriva D. A.: A Conservative Staggered Grid Chebychev Multi–Domain Method for Compressible Flows. II: A Semi–Structured Method. NASA Contractor Report ICASE Report No. 96-15, ICASE, NASA Langley Research Center, 1996
[12] Kopriva D. A., Kolias J. H.:
A conservative staggered grid Chebychev multi–domain method for compressible flows. J. Comput. Phys. 125 (1996), 1, 244–261
DOI 10.1006/jcph.1996.0091 |
MR 1381812
[13] Rumsey C., Leer B. van, Roe P. L.:
A multidimensional flux function with applications to the Euler and Navier–Stokes equations. J. Comput. Phys. 105 (1993), 306–323
DOI 10.1006/jcph.1993.1077 |
MR 1210411