Previous |  Up |  Next

Article

Keywords:
nonlinear evolution equation; parameter estimation
Summary:
We briefly discuss an abstract approximation framework and a convergence theory of parameter estimation for a general class of nonautonomous nonlinear evolution equations. A detailed discussion of the above theory has been given earlier by the authors in another paper. The application of this theory together with numerical results indicating the feasibility of this general least squares approach are presented in the context of quasilinear reaction diffusion equations.
References:
[1] Ackleh A. S., Fitzpatrick B. G.: Estimation of time dependent parameters in general parabolic evolution systems. J. Math. Anal. Appl. 203 (1996), 464–480 DOI 10.1006/jmaa.1996.0391 | MR 1410934 | Zbl 0869.35047
[2] Ackleh A. S., Fitzpatrick B. G.: Estimation of discontinuous parameters in general parabolic systems. Kybernetika 32 (1996), 543–556 MR 1438104
[3] Ackleh A. S., Reich S.: Parameter Estimation in Nonlinear Evolution Equations. Numer. Funct. Anal. Optim. 19 (1998), 933–947 DOI 10.1080/01630569808816867 | MR 1656403 | Zbl 0922.35185
[4] Banks H. T., Kunisch K.: Estimation Techniques for Distributed Parameter Systems. Birkhäuser, Boston – Basel 1989 MR 1045629 | Zbl 0695.93020
[5] Banks H. T., Lo C. K., Reich S., Rosen I. G.: Numerical studies of identification in nonlinear distributed parameter systems. Internat. Ser. Numer. Math. 91 (1989), 1–20 MR 1033048 | Zbl 0692.93019
[6] Banks H. T., Reich S., Rosen I. G.: An approximation theory for the identification of nonlinear distributed parameter systems. SIAM J. Control Optim. 28 (1990), 552–569 DOI 10.1137/0328033 | MR 1047423 | Zbl 0722.47058
[7] Banks H. T., Reich S., Rosen I. G.: Estimation of nonlinear damping in second order distributed parameter systems. Control Theory and Advanced Technology 6 (1990), 395–415 MR 1080016
[8] Banks H. T., Reich S., Rosen I. G.: Galerkin Approximation for inverse problems for nonautonomous nonlinear distributed systems. Appl. Math. Optim. 24 (1991), 233–256 DOI 10.1007/BF01447744 | MR 1123788 | Zbl 0739.65098
[9] Barbu V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden 1976 MR 0390843 | Zbl 0328.47035
[10] Bear J.: Dynamics of Fluids in Porous Media. Elsevier, New York 1972 Zbl 1191.76002
[11] Canuto C., Quateroni A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comp. 38 (1982), 67–86 DOI 10.1090/S0025-5718-1982-0637287-3 | MR 0637287
[12] Fitzpatrick B. G.: Analysis and approximation for inverse problems in contaminant transport and biodegradation models. Numer. Funct. Anal. Optim. 16 (1995), 847–866 DOI 10.1080/01630569508816650 | MR 1355277 | Zbl 0839.76081
[13] Freeze R. A., Cherry J.: Groundwater. Prentice–Hall, Englewood Cliffs, N. J. 1979
[14] Johnson C.: Numerical Solution of Partial Differential Equations by The Finite Element Method. Cambridge Univ. Press, Cambridge 1987 MR 0925005 | Zbl 0628.65098
[15] Kluge R., Langmach H.: On some Problems of Determination of Functional Parameters in Partial Differential Equations, In: Distributed Parameter Systems: Modeling and Identification (Lecture Notes in Control and Information Sciences 1). Springer–Verlag, Berlin 1978, pp. 298–309 MR 0513638
[16] Pao C. V.: Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York 1992 MR 1212084 | Zbl 0777.35001
[17] Schultz M. H.: Spline Analysis. Prentice–Hall, Englewood Cliffs, N. J. 1973 MR 0362832 | Zbl 0333.41009
[18] Swartz B. K., Varga R. S.: Error bounds for spline and $L$-spline interpolation. J. Approx. Theory 6 (1972), 6–49 DOI 10.1016/0021-9045(72)90079-2 | MR 0367514 | Zbl 0242.41008
Partner of
EuDML logo