[5] Banaszuk A., Kociecki M., Przyluski K. M.:
The disturbance decoupling problem for implicit linear discrete–time systems. SIAM J. Control Optim. 28 (1990), 1270–1293
DOI 10.1137/0328068 |
MR 1075204 |
Zbl 0726.93050
[7] Campell S. L.: Singular Systems of Differential Equations I. Pitman, New York 1980
[8] Campell S. L.: Singular Systems of Differential Equations II. Pitman, New York 1982
[11] Dai L.:
Singular Control Systems. (Lecture Notes in Control and Inform. Sci. 118.) Springer–Verlag, Berlin 1989
MR 0986970 |
Zbl 0669.93034
[12] Dai L.:
Observers for discrete-singular systems. IEEE Trans. Automat. Control AC-33 (1990), 187–191
DOI 10.1109/9.387 |
MR 0922795
[18] Fletcher L. R., Aasaraai A.:
On disturbance decoupling in descriptor systems. SIAM J. Control Optim. 27 (1989), 5, 1319–1332
DOI 10.1137/0327067 |
MR 1022430
[19] Lewis F. L.:
A survey of linear singular systems. Circuits Systems Signal Process. 5 (1986), 3–35
MR 0893725 |
Zbl 0613.93029
[23] Pandolfi L.:
Controllability and stabilizability for linear systems of algebraic and differential equations. J. Optim. Theory Appl. 30 (1980), 601–620
DOI 10.1007/BF01686724 |
MR 0572159
[24] Tan S., Vandewalle J.: Observer design for singular systems using canonical forms. IEEE Trans. Circuits Systems CS-35 (1988), 583–587