Previous |  Up |  Next

Article

Keywords:
tracking and regulation problem; linear time-invariant system; design procedure; internal model principle
Summary:
The tracking and regulation problem is considered for a class of generalized systems, in case of exponential reference signals and of disturbance functions. First, the notions of steady-state response and of blocking zero, which are classical for linear time-invariant systems, are given for generalized systems. Then, the tracking and regulation problem is stated and solved for the class of generalized systems under consideration, giving a general design procedure. As a corollary of the effectiveness proof of the design procedure, an algebraic version of the internal model principle is stated for generalized systems.
References:
[1] Ailon A.: Controllability of generalized linear time–invariant systems. IEEE Trans. Automat. Control AC-32 (1987), 429–432 DOI 10.1109/TAC.1987.1104626 | MR 0883861 | Zbl 0622.93007
[2] Ailon A.: An approach for pole assignment in singular systems. IEEE Trans. Automat. Control AC-34 (1989), 889–893 DOI 10.1109/9.29436 | MR 1004310 | Zbl 0698.93036
[3] Armentano V. A.: Eigenvalue placement for generalized linear systems. Systems Control Lett. 4 (1984), 199–202 DOI 10.1016/S0167-6911(84)80025-0 | MR 0748282 | Zbl 0538.93024
[4] Banaszuk A., Kociecki M., Przyluski K. M.: On almost invariant subspaces for implicit linear discrete-time systems. Systems Control Lett. 11 (1988), 289–297 DOI 10.1016/0167-6911(88)90073-4 | MR 0965276 | Zbl 0666.93052
[5] Banaszuk A., Kociecki M., Przyluski K. M.: The disturbance decoupling problem for implicit linear discrete–time systems. SIAM J. Control Optim. 28 (1990), 1270–1293 DOI 10.1137/0328068 | MR 1075204 | Zbl 0726.93050
[6] Banaszuk A., Kociecki M., Przyluski K. M.: Implicit linear discrete–time systems. Math. Control, Signals and Systems 3 (1990), xxx–xxx DOI 10.1007/BF02551372 | MR 1052858 | Zbl 0726.93050
[7] Campell S. L.: Singular Systems of Differential Equations I. Pitman, New York 1980
[8] Campell S. L.: Singular Systems of Differential Equations II. Pitman, New York 1982
[9] Cobb D.: Feedback and pole placement in descriptor variable systems. Internat. J. Control 33 (1981), 1135–1146 DOI 10.1080/00207178108922981 | MR 0624176 | Zbl 0464.93039
[10] Conte G., Perdon A. M.: Generalized state space realizations of nonproper rational transfer matrices. System Control Lett. 1 (1982), 270–276 DOI 10.1016/S0167-6911(82)80011-X | MR 0670211
[11] Dai L.: Singular Control Systems. (Lecture Notes in Control and Inform. Sci. 118.) Springer–Verlag, Berlin 1989 MR 0986970 | Zbl 0669.93034
[12] Dai L.: Observers for discrete-singular systems. IEEE Trans. Automat. Control AC-33 (1990), 187–191 DOI 10.1109/9.387 | MR 0922795
[13] Davison E. J.: The robust control of a servomechanism problem for linear time–invariant multivariable systems. IEEE Trans. Automat. Control AC-21 (1976), 25–34 DOI 10.1109/TAC.1976.1101137 | MR 0406616 | Zbl 0326.93007
[14] Davison E. J., Goldenberg A.: Robust control of a general servomechanism problem: the servo compensator. Automatica 11 (1975), 461–471 DOI 10.1016/0005-1098(75)90022-9 | MR 0429211 | Zbl 0319.93025
[15] Fletcher L. R., Kautsky, J., Nichols N. K.: Eigenstructure assignment in descriptor systems. IEEE Trans. Automat. Control AC-31 (1986), 1138–1141 DOI 10.1109/TAC.1986.1104189 | Zbl 0608.93031
[16] Fletcher L. R.: Regularisability of descriptor systems. Internat. J. Systems Sci. 17 (1986), 5, 843–847 DOI 10.1080/00207728608926849 | MR 0839565
[17] Fletcher L. R.: Pole placement and controllability subspaces in descriptor systems. Internat. J. Control 66 (1997), 5, 677–709 DOI 10.1080/002071797224504 | MR 1672561
[18] Fletcher L. R., Aasaraai A.: On disturbance decoupling in descriptor systems. SIAM J. Control Optim. 27 (1989), 5, 1319–1332 DOI 10.1137/0327067 | MR 1022430
[19] Lewis F. L.: A survey of linear singular systems. Circuits Systems Signal Process. 5 (1986), 3–35 MR 0893725 | Zbl 0613.93029
[20] Luenberger D. G.: Time–invariant descriptor systems. Automatica 14 (1978), 473–481 DOI 10.1016/0005-1098(78)90006-7 | Zbl 0398.93040
[21] Moylan P. J.: Stable inversion for linear singular systems. IEEE Trans. Automat. Control AC-22 (1977), 74–78 DOI 10.1109/TAC.1977.1101430 | MR 0444161
[22] Ozcaldiran K., Lewis F. L.: A geometric approach to eigenstructure assignment for singular systems. IEEE Trans. Automat. Control AC-32 (1987), 629–632 DOI 10.1109/TAC.1987.1104668 | Zbl 0623.93031
[23] Pandolfi L.: Controllability and stabilizability for linear systems of algebraic and differential equations. J. Optim. Theory Appl. 30 (1980), 601–620 DOI 10.1007/BF01686724 | MR 0572159
[24] Tan S., Vandewalle J.: Observer design for singular systems using canonical forms. IEEE Trans. Circuits Systems CS-35 (1988), 583–587
[25] Tornambè A.: A simple procedure for the stabilization of a class of uncontrollable generalized systems. IEEE Trans. Automat. Control 41 (1996), 4, 603–607 DOI 10.1109/9.489284 | MR 1385334 | Zbl 0854.93120
[26] Verghese G. C., Levy B., Kailath T.: A generalized state space for singular systems. IEEE Trans. Automat. Control AC-26 (1981), 811–831 DOI 10.1109/TAC.1981.1102763 | MR 0635842 | Zbl 0541.34040
[27] Verhaegen M., Dooren P. van: A reduced observer for descriptor systems. System Control Lett. 8 (1986), 29–37 DOI 10.1016/0167-6911(86)90026-5
[28] Wang Y. Y., Shi S. J., Zhang Z. J.: Pole placement and compensator design of generalized systems. System Control Lett. 8 (1987), 205–209 DOI 10.1016/0167-6911(87)90028-4 | MR 0877086 | Zbl 0612.93028
[29] Yip E., Sincovec R. F.: Solvability, controllability and observability of continuous descriptor systems. IEEE Trans. Automat. Control AC-26 (1981), 702–707 DOI 10.1109/TAC.1981.1102699 | MR 0630799 | Zbl 0482.93013
[30] Zhou Z., Shayman M. A., Tarn T. J.: Singular systems: a new approach in the time domain. IEEE Trans. Automat. Control AC-32 (1987), 42–50 DOI 10.1109/TAC.1987.1104430 | MR 0868917 | Zbl 0612.93030
Partner of
EuDML logo