[2] Attneave F.:
Some informational aspects of visual perception. Psychological Review 61 (1954), 183–193
DOI 10.1037/h0054663
[3] Becker S., Hinton G. E.:
A self–organizing neural network that discovers surfaces in random–dot stereograms. Nature (London) 355 (1992), 161–163
DOI 10.1038/355161a0
[4] Bromhead D. S., Lowe D.:
Multivariate functional interpolation and adaptive networks. Complex Systems 2 (1988), 321–355
MR 0955557
[7] Dempster A. P., Laird N. M., Rubin D. B.:
Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39 (1977), 1–38
MR 0501537 |
Zbl 0364.62022
[8] Devroye L., Győrfi L.:
Nonparametric Density Estimation: The $L_1$ View. John Wiley, New York 1985
MR 0780746
[9] Devroye L., Győrfi L., Lugosi G.:
A Probabilistic Theory of Pattern Recognition. Springer, New York 1996
MR 1383093
[11] Haykin S.:
Neural Networks: A Comprehensive Foundation. MacMillan, New York 1994
Zbl 0934.68076
[12] Hertz J., Krogh A., Palmer R. G.:
Introduction to the Theory of Neural Computation. Addison–Wesley, New York, Menlo Park CA, Amsterdam 1991
MR 1096298
[13] Jacobs R. A., Jordan M. I.: A competitive modular connectionist architecture. In: Advances in Neural Information Processing Systems (R. P. Lippmann, J. E. Moody and D. J. Touretzky, eds.), Morgan Kaufman, San Mateo CA 1991, Vol. 3. pp. 767–773
[14] Kay J.: Feature discovery under contextual supervision using mutual information. In: International Joint Conference on Neural Networks, Baltimore MD 1992, Vol. 4, pp. 79–84
[16] Linsker R.:
Self–organization in perceptual network. Computer 21 (1988), 105–117
DOI 10.1109/2.36
[17] Linsker R.:
Perceptual neural organization: Some approaches based on network models and information theory. Annual Review of Neuroscience 13 (1990), 257–281
DOI 10.1146/annurev.ne.13.030190.001353
[18] Lowe D.: Adaptive radial basis function nonlinearities, and the problem of generalization. In: First IEE International Conference on Artificial Neural Networks, 1989, pp. 95–99
[20] Palm H. CH.: A new method for generating statistical classifiers assuming linear mixtures of Gaussiian densities. In: Proceedings of the 12th IAPR Int. Conference on Pattern Recognition, IEEE Computer Society Press Jerusalem 1994, Vol. II., pp. 483–486
[21] Plumbley M. D.: A Hebbian/anti–Hebbian network which optimizes information capacity by orthonormalizing the principle subspace. In: IEE Artificial Neural Networks Conference, ANN-93, Brighton 1992, pp. 86–90
[22] Plumbley M. D., Fallside F.: An information–theoretic approach to unsupervised connectionist models. In: Proceedings of the 1988 Connectionist Models Summer School, (D. Touretzky, G. Hinton and T. Sejnowski, eds.), Morgan Kaufmann, San Mateo 1988, pp. 239–245
[24] Rissanen J.:
Stochastic Complexity in Statistical Inquiry. World Scientific, New Jersey 1989
MR 1082556 |
Zbl 0800.68508
[25] Specht D. F.: Probabilistic neural networks for classification, mapping or associative memory. In: Proc. of the IEEE Int. Conference on Neural Networks, 1988, Vol. I., pp. 525–532
[27] Streit L. R., Luginbuhl T. E.:
Maximum likelihood training of probabilistic neural networks. IEEE Trans. Neural Networks 5 (1994), 5, 764–783
DOI 10.1109/72.317728
[28] Vajda I., Grim J.: Bayesian optimality of decisions is achievable by RBF neural networks. IEEE Trans. Neural Networks, submitted
[29] Ukrainec A., Haykin S.:
A modular neural network for unhancement of errors–polar radar targets. Neural Networks 9 (1996), 141–168
DOI 10.1016/0893-6080(95)00062-3
[30] Uttley A. M.: The transmission of information and the effect of local feedback in theoretical and neural networks. Brain Research 102 (1966), 23–35
[31] Watanabe S., Fukumizu K.:
Probabilistic design of layered neural networks based on their unified framework. IEEE Trans. Neural Networks 6 (1995), 3, 691–702
DOI 10.1109/72.377974
[32] Xu L., Jordan M. I.: EM learning on a generalized finite mixture model for combining multiple classifiers. In: World Congress on Neural Networks, 1993, Vol. 4, pp. 227–230
[33] Xu L., Krzyżak A., Oja E.:
Rival penalized competitive learning for clustering analysis, RBF net and curve detection. IEEE Trans. Neural Networks 4 (1993), 636–649
DOI 10.1109/72.238318