[4] Ferri F. J., Pudil P., Hatef M., Kittler J.: Comparative study of techniques for large–scale feature selection. In: Pattern Recognition in Practice IV (E. S. Gelsema and L. N. Kanal, eds.), Elsevier 1994, pp. 403–413
[5] Kittler J.: Feature selection and extraction. Handbook of Pattern Recognition and Image Processing (T. Y. Young and K. S. Fu, eds.), Academic Press, New York 1986, pp. 60–81
[6] Narendra P. M., Fukunaga K.:
A Branch and Bound Algorithm for feature subset selection. IEEE Trans. Computers C-26 (1977), 917–922
DOI 10.1109/TC.1977.1674939
[7] Novovičová J., Pudil P., Kittler J.: Feature selection based on divergence for empirical class densities. In: Proc. of the 9th Scandinavian Conf. on Image Analysis, Uppsala 1995
[8] Novovičová J., Pudil P., Kittler J.:
Divergence based feature selection for multimodal class densities. IEEE Trans. Pattern Recognition Machine Intelligence 18 (1996), 2, 218–223
DOI 10.1109/34.481557
[9] Novovičová J., Pudil P.: Feature selection and classification by modified model with latent structure. In: Dealing With Complexity: Neural Network Approach. Springer Verlag, Berlin 1997, pp. 126–140
[10] Pudil P., Bláha S., Novovičová J.: PREDITAS – software package for solving pattern recognition and diagnostic problems. In: Proc. BPRA 4th Internat. Conference on Pattern Recognition, Cambridge (J. Kittler, ed.), Springer–Verlag, Berlin 1988, pp. 146–152
[12] Pudil P., Novovičová J., Choakjarernwanit N., Kittler J.: The Max–Min approach to feature selection: Its foundations and potential. Indian J. Pure Appl. Math. 24 (1994), 11, 69–81
[13] Pudil P., Novovičová J., Kittler J.: Automatic machine learning of decision rule for classification problems in image analysis. In: Proceedings of BMVC ’93 – the 4th British Machine Vision Conference, 1993
[14] Pudil P., Novovičová J., Kittler J.:
Simultaneous learning of decision rules and important attributes for classification problems in image analysis. Image and Vision Computing 12 (1994), 3, 193–198
DOI 10.1016/0262-8856(94)90072-8
[15] Pudil P., Ferri F., Novovičová J., Kittler J.: Floating search methods for feature selection with nonmonotonic criterion functions. In: Proc. of the 12th IAPR Intern. Conf. on Pattern Recognition, Jerusalem 1994, IEEE Comp. Society Press, pp. 279–283
[16] Pudil P., Novovičová J., Kittler J.:
Floating search methods in feature selection. Pattern Recognition Lett. 15 (1994), 1119–1125
DOI 10.1016/0167-8655(94)90127-9
[17] Pudil P., Novovičová J., Choakjarerwanit N., Kittler J.:
Feature selection based on the approximation of class densities by finite mixtures of special type. Pattern Recognition 28 (1995), 9, 1389–1397
DOI 10.1016/0031-3203(94)00009-B
[18] P.Pudil J.Novovičová, Ferri F. J.: Methods of dimensionality reduction in statistical pattern recognition. In: Proceedings of the IEEE European Workshop CMP’94, Prague 1994, Institute of Information Theory and Automation, pp. 185–198
[19] Siedlecki W., Sklansky J.:
On automatic feature selection. Internat. J. Pattern Recognition and Artificial Intelligence 2 (1988), 2, 197–220
DOI 10.1142/S0218001488000145
[20] Zongker D., Jain A.: Algorithms for feature selection: An evaluation. In: Proceedings of 13th International Conference on Pattern Recognition, Vienna 1996, Vol. II, Track B, pp. 18–22