[2] Ash R. B.:
Real Analysis and Probability. Academic Press, New York 1972
MR 0435320
[3] Cavazos–Cadena R.:
Nonparametric adaptive control of discounted stochastic system with compact state space. J. Optim. Theory Appl. 65 (1990), 191–207
DOI 10.1007/BF01102341 |
MR 1051545
[4] Dynkin E. B., A A.:
Yushkevich: Controlled Markov Processes. Springer–Verlag, New York 1979
MR 0554083
[5] Fernández–Gaucherand E., Arapostathis A., Marcus S. I.: A methodology for the adaptive control of Markov chains under partial state information. In: Proc. of the 1992 Conf. on Information Sci. and Systems, Princeton, New Jersey, pp. 773–775
[6] Fernández–Gaucherand E., Arapostathis A., Marcus S. I.:
Analysis of an adaptive control scheme for a partially observed controlled Markov chain. IEEE Trans. Automat. Control 38 (1993), 987–993
DOI 10.1109/9.222316 |
MR 1227213 |
Zbl 0786.93089
[7] Gordienko E. I.:
Adaptive strategies for certain classes of controlled Markov processes. Theory Probab. Appl. 29 (1985), 504–518
Zbl 0577.93067
[8] Gordienko E. I.:
Controlled Markov sequences with slowly varying characteristics II. Adaptive optimal strategies. Soviet J. Comput. Systems Sci. 23 (1985), 87–93
MR 0844298 |
Zbl 0618.93070
[9] Gordienko E. I., Hernández–Lerma O.:
Average cost Markov control processes with weighted norms: value iteration. Appl. Math. 23 (1995), 219–237
MR 1341224 |
Zbl 0829.93068
[10] Gordienko E. I., Montes–de–Oca R., Minjárez–Sosa J. A.:
Approximation of average cost optimal policies for general Markov decision processes with unbounded costs. Math. Methods Oper. Res. 45 (1997), 2, to appear
DOI 10.1007/BF01193864 |
MR 1446409 |
Zbl 0882.90127
[13] Hernández–Lerma O.: Infinite–horizon Markov control processes with undiscounted cost criteria: from average to overtaking optimality. Reporte Interno 165. Departamento de Matemáticas, CINVESTAV-IPN, A.P. 14-740.07000, México, D. F., México (1994). (Submitted for publication)
[15] Hernández–Lerma O., Lasserre J. B.:
Discrete–Time Markov Control Processes. Springer–Verlag, New York 1995
Zbl 0928.93002
[17] Hernández–Lerma O., Marcus S. I.:
Adaptive policies for discrete–time stochastic control system with unknown disturbance distribution. Systems Control Lett. 9 (1987), 307–315
DOI 10.1016/0167-6911(87)90055-7 |
MR 0912683
[18] Hinderer K.:
Foundations of Non-Stationary Dynamic Programming with Discrete Time Parameter. (Lecture Notes in Operations Research and Mathematical Systems 33.) Springer–Verlag, Berlin – Heidelberg – New York 1970
MR 0267890 |
Zbl 0202.18401
[19] Köthe G.:
Topological Vector Spaces I. Springer–Verlag, New York 1969
MR 0248498
[20] Kumar P. R., Varaiya P.:
Stochastic Systems: Estimation, Identification and Adaptive Control. Prentice–Hall, Englewood Cliffs 1986
Zbl 0706.93057
[26] Stettner L.:
Ergodic control of Markov process with mixed observation structure. Dissertationes Math. 341 (1995), 1–36
MR 1318335
[27] Nunen J. A. E. E. van, Wessels J.:
A note on dynamic programming with unbounded rewards. Management Sci. 24 (1978), 576–580
DOI 10.1287/mnsc.24.5.576