[1] Cheeseman P.: A method of computing generalized Bayesian probability values of expert systems. In: Proceedings of the 6-th Joint Conference on Artificial Intelligence (IJCAI-83), Karlsruhe, pp. 198–202
[2] Deming W. E., Stephan F. F.:
On a least square adjustment of sampled frequency table when the expected marginal totals are known. Ann. Math. Statist. 11 (1940), 427–444
DOI 10.1214/aoms/1177731829 |
MR 0003527
[3] Gilio A., Ingrassia S.: Geometrical aspects in checking coherence of probability assessments. In: IPMU’96: Proceedings of the 6th International IPMU Conference (B. Bouchon–Meunier, M. Delgado, J. L. Verdegay, M. A. Vila, R. Yager, eds.), Granada 1996, pp. 55–59
[4] Coletti G., Scozzafava R.:
Characterization of coherent conditional probabilities as a tool for their assessment and extension. Internat. J. Uncertainty, Fuzziness and Knowledge–Based Systems, 4 (1996), 2, 103–127
DOI 10.1142/S021848859600007X |
MR 1390898 |
Zbl 1232.03010
[6] Kříž O.: Invariant moves for constructing extensions of marginals. In: IPMU’94: Proceedings of the 5th International IPMU Conference (B. Bouchon–Meunier, R. Yager, eds.), Paris 1994, pp. 984–989
[7] Kříž O.: Optimizations on finite–dimensional distributions with fixed marginals. In: WUPES 94: Proceedings of the 3-rd Workshop on Uncertainty Processing (R. Jiroušek, ed.), Třešť 1994, pp. 143–156
[8] Kříž O.: Marginal problem on finite sets. In: IPMU’96: Proceedings of the 6-th International IPMU Conference (B. Bouchon–Meunier, M. Delgado, J. L. Verdegay, M. A. Vila, R. Yager, eds.), Granada 1996, Vol. II, pp. 763–768
[9] Kříž O.:
Inconsistent marginal problem on finite sets. In: Distributions with Given Marginals and Moment Problems (J. Štěpán, V. Beneš, eds.), Kluwer Academic Publishers, Dordrecht – Boston – London 1997, pp. 235–242
Zbl 0907.60003
[10] Scozzafava R.:
A probabilistic background for the management of uncertainty in Artificial Intelligence. European J. Engineering Education 20 (1995), 3, 353–363
DOI 10.1080/03043799508923366
[11] Vicig P.: An algorithm for imprecise conditional probability assesment in expert systems. In: IPMU’96: Proceedings of the 6-th International IPMU Conference (B. Bouchon–Meunier, M. Delgado, J. L. Verdegay, M. A. Vila, R. Yager, eds.), Granada, 1996, Vol. I, pp. 61–66