Previous |  Up |  Next

Article

Keywords:
Axiom of Choice; axiom of finite choice; bases in a vector space; linear forms
Summary:
We work in set-theory without choice ZF. Given a commutative field $\mathbb K$, we consider the statement $\mathbf D (\mathbb K)$: “On every non null $\mathbb K$-vector space there exists a non-null linear form.” We investigate various statements which are equivalent to $\mathbf D (\mathbb K)$ in ZF. Denoting by $\mathbb Z_2$ the two-element field, we deduce that $\mathbf D (\mathbb Z_2)$ implies the axiom of choice for pairs. We also deduce that $\mathbf D (\mathbb Q)$ implies the axiom of choice for linearly ordered sets isomorphic with $\mathbb Z$.
References:
[1] Blass A.: Existence of bases implies the axiom of choice. in Axiomatic Set Theory (Boulder, Colo., 1983), Contemp. Math., 31, pp. 31--33, American Mathematical Society, Providence, RI, 1984. DOI 10.1090/conm/031/763890 | MR 0763890 | Zbl 0557.03030
[2] Delhommé C., Morillon M.: Spanning graphs and the axiom of choice. Rep. Math. Logic 40 (2006), 165--180. MR 2207308
[3] Halpern J.D.: Bases in vector spaces and the axiom of choice. Proc. Amer. Math. Soc. 17 (1966), 670--673. DOI 10.1090/S0002-9939-1966-0194340-1 | MR 0194340 | Zbl 0148.25401
[4] Hodges W.: Model Theory. Encyclopedia of Mathematics and its Applications, 42, Cambridge University Press, Cambridge, 1993. MR 1221741 | Zbl 1139.03021
[5] Höft H., Howard P.: A graph theoretic equivalent to the axiom of choice. Z. Math. Logik Grundlagen Math. 19 (1973), 191. DOI 10.1002/malq.19730191103 | MR 0316283
[6] Howard P.: Bases, spanning sets, and the axiom of choice. MLQ Math. Log. Q. 53 (2007), no. 3, 247--254. DOI 10.1002/malq.200610043 | MR 2330594 | Zbl 1121.03064
[7] Howard P., Rubin J.E.: Consequences of the Axiom of Choice. Mathematical Surveys and Monographs, 59, American Mathematical Society, Providence, RI, 1998. MR 1637107 | Zbl 0947.03001
[8] Jech T.J.: The Axiom of Choice. North-Holland Publishing Co., Amsterdam, 1973. MR 0396271 | Zbl 0259.02052
[9] Jurie P.-F.: Coproduits Booléiens (Théorie générale et application à la théorie des anneaux booléiens monadiques). PhD Thesis, University of Clermont-Ferrand, 1965.
[10] Keremedis K.: Bases for vector spaces over the two-element field and the axiom of choice. Proc. Amer. Math. Soc. 124 (1996), no. 8, 2527--2531. DOI 10.1090/S0002-9939-96-03305-9 | MR 1322930 | Zbl 0859.03022
[11] Keremedis K.: The vector space Kinna-Wagner principle is equivalent to the axiom of choice. MLQ Math. Log. Q. 47 (2001), no. 2, 205--210. DOI 10.1002/1521-3870(200105)47:2<205::AID-MALQ205>3.0.CO;2-I | MR 1829941 | Zbl 1001.03043
[12] Luxemburg W.: Reduced powers of the real number system and equivalents of the Hahn-Banach extension theorem. Applications of Model Theory to Algebra, Analysis and Probability (Internat. Sympos., Pasadena, Calif., 1967), Holt, Rinehart and Winston, New York, 1969, pp. 123--137. MR 0237327 | Zbl 0181.40101
[13] Mathias A.: A note on chameleons. preprint.
[14] Morillon M.: Algèbres de Boole mesurées et axiome du choix. in Séminaire d'Analyse, 5, (Clermont-Ferrand, 1989--1990), Exp. No. 15, Univ. Clermont-Ferrand II, Clermont, 1993. MR 1261917 | Zbl 0899.03036
[15] Shelah S.: Can you take Solovay's inaccessible away?. Israel J. Math. 48 (1984), no. 1, 1--47. DOI 10.1007/BF02760522 | MR 0768264 | Zbl 0596.03055
[16] Solovay R.M.: A model of set-theory in which every set of reals is Lebesgue measurable. Ann. of Math. (2) 92 (1970), 1--56. DOI 10.2307/1970696 | MR 0265151 | Zbl 0207.00905
[17] Wright J.D.M.: All operators on a Hilbert space are bounded. Bull. Amer. Math. Soc. 79 (1973), 1247--1250. DOI 10.1090/S0002-9904-1973-13399-3 | MR 0328649 | Zbl 0284.46006
Partner of
EuDML logo