[1] Ungar A.A.:
Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession. Fundamental Theories of Physics, 117, Kluwer Academic Publishers Group, Dordrecht, 2001.
MR 1978122 |
Zbl 0972.83002
[2] Ungar A.A.:
Analytic Hyperbolic Geometry,: Mathematical Foundations and Applications. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.
MR 2169236 |
Zbl 1089.51003
[4] Ungar A.A.:
The hyperbolic square and Möbius transformations. Banach J. Math. Anal. 1 (2007), no. 1, 101--116.
MR 2350199 |
Zbl 1129.30027
[7] G.S. Birman and Ungar A.A.:
The Hyperbolic Derivative in the Poincaré ball model of Hyperbolic Geometry. Journal of. Math. Anal. and Appl. 254, 2001, 321--333.
DOI 10.1006/jmaa.2000.7280 |
MR 1807904
[8] Ungar A.A.:
Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008.
MR 2169236 |
Zbl 1147.83004
[10] Bhumkar K.: Interactive visualization of Hyperbolic geometry using the Weierstrass model. A Thesis submitted to the Faculty of the Graduate School of University of Minnesota, 2006.
[11] Demirel O., Soytürk E.:
The hyperbolic Carnot theorem in the Poincaré disc model of hyperbolic geometry. Novi Sad J. Math. 38 (2008), no. 2, 33--39.
MR 2526025