[1] C. Amrouche, V. Girault, J. Giroire:
Weighted Sobolev spaces for Laplace’s equation in $\mathbb{R}^n$. J. Math. Pures Appl., IX. Sér. 73 (1994), 579–606.
MR 1309165
[2] C. Amrouche, U. Razafison:
Weighted Sobolev spaces for a scalar model of the stationary Oseen equation in $\mathbb{R}^{3}$. J. Math. Fluids Mech (to appear).
MR 2329264
[3] R. Farwig:
A variational approach in weighted Sobolev spaces to the operator $-\Delta + \partial /\partial x_{1}$ in exterior domains of $\mathbb{R}^{3}$. Math. Z. 210 (1992), 449–464.
MR 1171183
[4] R. Farwig:
The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces. Math. Z. 211 (1992), 409–448.
DOI 10.1007/BF02571437 |
MR 1190220
[5] R. Farwig, H. Sohr:
Weighted estimates for the Oseen equations and the Navier-Stokes equations in exterior domains. Proc. 3rd International Conference on the Navier-Stokes Equations: Theory and Numerical Methods, Oberwolfach, Germany, June 5–11, 1994, J. G. Heywood (ed.), World Scientific, Ser. Adv. Math. Appl. Sci. Vol. 47, Singapore, 1998, pp. 11–30.
MR 1643022
[7] R. Finn:
Estimates at infinity for stationary solutions of the Navier-Stokes equations. Bull. Math. Soc. Sci. Math. Phys. R. P. R. 51 (1960), 387–418.
MR 0166495 |
Zbl 0106.39402
[8] G. P. Galdi:
An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I: Linearized steady problems. Springer Tracts in Natural Philosophy, Vol. 38, Springer, New York, 1994.
MR 1284205
[9] B. Hanouzet:
Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace. Rend. Sem. Mat. Univ. Padova 46 (1972), 227–272.
MR 0310417 |
Zbl 0247.35041
[12] P. I. Lizorkin:
$(L^p,L^{q})$-multipliers of Fourier integrals. Dokl. Akad. Nauk SSSR 152 (1963), 808–811.
MR 0154057 |
Zbl 0199.44401
[13] C. W. Oseen: Über die Stokessche Formel und über eine verwandte Aufgabe in der Hydrodynamik. Arkiv fór Mat. Astron. och Fys. 7 (1911), 1–36.
[14] C. W. Oseen: Neuere Methoden und Ergebnisse in der Hydrodynamik. Akadem. Verlagsgesellschaft, Leipzig, 1927.
[15] C. Pérez:
Two weighted norm inequalities for Riesz potentials and uniform $L^{p}$- weighted Sobolev inequalities. Indiana Univ. Math. J. 39 (1990), 31–44.
DOI 10.1512/iumj.1990.39.39004 |
MR 1052009
[16] M. Reed, B. Simon:
Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-adjointness. Academic Press, New York-San Francisco-London, 1975.
MR 0493420
[17] E. M. Stein:
Singular Integrals and Differentiability Properties of Functions. University Press, Princeton, 1970.
MR 0290095 |
Zbl 0207.13501