Previous |  Up |  Next

Article

Keywords:
homogenization; $G$-convergence; multiscale convergence; parabolic; asymptotic expansion
Summary:
The main focus in this paper is on homogenization of the parabolic problem $ \partial _{t}u^{\varepsilon }-\nabla \cdot ( a( {x}/{\varepsilon },{t}/{\varepsilon }, {t}/{\varepsilon ^{r}})\nabla u^{\varepsilon }) =f$. Under certain assumptions on $a$, there exists a $G$-limit $b$, which we characterize by means of multiscale techniques for $r>0$, $r\ne 1$. Also, an interpretation of asymptotic expansions in the context of two-scale convergence is made.
References:
[1] G.  Allaire: Homogenization and two-scale convergence. SIAM J.  Math. Anal. 23 (1992), 1482–1518. DOI 10.1137/0523084 | MR 1185639 | Zbl 0770.35005
[2] G. Allaire, M. Briane: Multiscale convergence and reiterated homogenization. Proc. R.  Soc. Edinburgh, Sect.  A 126 (1996), 297–342. MR 1386865
[3] S. Brahim-Otsmane, G. A. Francfort, and F.  Murat: Correctors for the homogenization of the heat and wave equations. J.  Math. Pures Appl. 71 (1992), 197–231. MR 1172450
[4] A.  Bensoussan, J.-L.  Lions, and G.  Papanicolaou: Asymptotic Analysis for Periodic Structures. Stud. Math. Appl. North-Holland, Amsterdam-New York-Oxford, 1978. MR 0503330
[5] D. Cioranescu, P.  Donato: An Introduction to Homogenization. Oxford Lecture Ser. Math. Appl. Oxford University Press, Oxford, 1999. MR 1765047
[6] F. Colombini, S. Spagnolo: Sur la convergence de solutions d’équations paraboliques. J.  Math. Pures Appl. 56 (1977), 263–305. (French) MR 0603300
[7] A.  Dall’Aglio, F.  Murat: A corrector result for $H$-converging parabolic problems with time-dependent coefficients. Ann. Sc. Norm. Super. Pisa Cl. Sci., IV. Ser. 25 (1997), 329–373. MR 1655521
[8] A.  Holmbom: Homogenization of parabolic equations. An alternative approach and some corrector-type results. Appl. Math. 42 (1997), 321–343. DOI 10.1023/A:1023049608047 | MR 1467553 | Zbl 0898.35008
[9] A.  Holmbom, N.  Svanstedt, N.  Wellander: Multiscale convergence and reiterated homogenization for parabolic problems. Appl. Math. 50 (2005), 131–151. DOI 10.1007/s10492-005-0009-z | MR 2125155
[10] D.  Lukkassen, G.  Nguetseng, P.  Wall: Two-scale convergence. Int. J.  Pure Appl. Math. 2 (2002), 35–86. MR 1912819
[11] G. Nguetseng: A general convergence result for a functional related to the theory of homogenization. SIAM J.  Math. Anal. 20 (1989), 608–623. DOI 10.1137/0520043 | MR 0990867 | Zbl 0688.35007
[12] A. Pankov: $G$-convergence and Homogenization of Nonlinear Partial Differential Operators. Mathematics and its Applications. Kluwer, Dordrecht, 1997. MR 1482803
[13] A. Profeti, B. Terreni: Uniformità per una convergenza di operatori parabolichi nel caso dell’omogenizzazione. Boll. Unione Math. Ital. Ser.  B 16 (1979), 826–841. (Italian) MR 0553800
[14] S.  Spagnolo: Convergence of parabolic equations. Boll. Unione Math. Ital.  Ser. B 14 (1977), 547–568. MR 0460889 | Zbl 0356.35042
[15] N. Svanstedt: $G$-convergence of parabolic operators. Nonlinear Anal. Theory Methods Appl. 36 (1999), 807–843. DOI 10.1016/S0362-546X(97)00532-4 | MR 1682689 | Zbl 0933.35020
[16] N. Svanstedt: Correctors for the homogenization of monotone parabolic operators. J.  Nonlinear Math. Phys. 7 (2000), 268–283. DOI 10.2991/jnmp.2000.7.3.2 | MR 1777302 | Zbl 0954.35023
Partner of
EuDML logo