[2] G. Allaire, M. Briane:
Multiscale convergence and reiterated homogenization. Proc. R. Soc. Edinburgh, Sect. A 126 (1996), 297–342.
MR 1386865
[3] S. Brahim-Otsmane, G. A. Francfort, and F. Murat:
Correctors for the homogenization of the heat and wave equations. J. Math. Pures Appl. 71 (1992), 197–231.
MR 1172450
[4] A. Bensoussan, J.-L. Lions, and G. Papanicolaou:
Asymptotic Analysis for Periodic Structures. Stud. Math. Appl. North-Holland, Amsterdam-New York-Oxford, 1978.
MR 0503330
[5] D. Cioranescu, P. Donato:
An Introduction to Homogenization. Oxford Lecture Ser. Math. Appl. Oxford University Press, Oxford, 1999.
MR 1765047
[6] F. Colombini, S. Spagnolo:
Sur la convergence de solutions d’équations paraboliques. J. Math. Pures Appl. 56 (1977), 263–305. (French)
MR 0603300
[7] A. Dall’Aglio, F. Murat:
A corrector result for $H$-converging parabolic problems with time-dependent coefficients. Ann. Sc. Norm. Super. Pisa Cl. Sci., IV. Ser. 25 (1997), 329–373.
MR 1655521
[9] A. Holmbom, N. Svanstedt, N. Wellander:
Multiscale convergence and reiterated homogenization for parabolic problems. Appl. Math. 50 (2005), 131–151.
DOI 10.1007/s10492-005-0009-z |
MR 2125155
[10] D. Lukkassen, G. Nguetseng, P. Wall:
Two-scale convergence. Int. J. Pure Appl. Math. 2 (2002), 35–86.
MR 1912819
[12] A. Pankov:
$G$-convergence and Homogenization of Nonlinear Partial Differential Operators. Mathematics and its Applications. Kluwer, Dordrecht, 1997.
MR 1482803
[13] A. Profeti, B. Terreni:
Uniformità per una convergenza di operatori parabolichi nel caso dell’omogenizzazione. Boll. Unione Math. Ital. Ser. B 16 (1979), 826–841. (Italian)
MR 0553800
[14] S. Spagnolo:
Convergence of parabolic equations. Boll. Unione Math. Ital. Ser. B 14 (1977), 547–568.
MR 0460889 |
Zbl 0356.35042