[1] G. Allaire, M. Briane:
Multiscale convergence and reiterated homogenization. Proc. R. Soc. Edinb., Sect. A 126 (1996), 297–342.
MR 1386865
[4] H. W. Alt:
Lineare Funktionalanalysis. Springer-Verlag, Berlin, 1985.
Zbl 0577.46001
[5] A. Bensoussan, J. -L. Lions, G. Papanicolau:
Asymptotic Analysis for Periodic Structures. Studies in Mathematics and Its Applications. North-Holland, Amsterdam-New York-Oxford, 1978.
MR 0503330
[6] J. Casado-Diaz, I. Gayte:
A general compactness result and its application to the two-scale convergence of almost periodic functions. C. R. Math. Acad. Sci. Paris, Ser. 1 323 (1996), 329–334.
MR 1408763
[8] D. Cioranescu, P. Donato:
An Introduction to Homogenization. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford, 1999.
MR 1765047
[11] L. C. Evans:
Weak Convergence Methods for Nonlinear Partial Differential Equations. CBMS Regional Conference Series in Mathematics, Vol. 74. 1990.
MR 1034481
[12] A. Holmbom, J. Silfver, N. Svanstedt, and N. Wellander:
On two-scale convergence and related sequential compactness topics. Appl. Math. 51 (2006), 247–262.
DOI 10.1007/s10492-006-0014-x |
MR 2228665
[13] D. Lukkassen, G. Nguetseng, and P. Wall:
Two-scale convergence. Int. J. Pure Appl. Math. 2 (2002), 35–86.
MR 1912819
[15] F. Murat: $H$-convergence. Séminarie d’Analyse Fonctionnelle et Numérique, 1977–1978, Université d’Alger, Alger, 1978.
[16] F. Murat:
Compacité par compensation. Ann. Sc. Norm. Super. Pisa Cl. Sci., IV. Ser. 5 (1978), 489–507.
MR 0506997 |
Zbl 0399.46022
[17] F. Murat:
Compacité par compensation II. In: Proc. Int. Meet. “Recent Methods in Nonlinear Analysis”, Pitagora, Bologna, , , 1979, pp. 245–256.
MR 0533170 |
Zbl 0427.35008
[20] G. Nguetseng:
Homogenization structures and applications I. Z. Anal. Anwend. 22 (2003), 73–107.
MR 1962077 |
Zbl 1045.46031
[21] J. Silfver: Sequential convergence for functions and operators. Licentiate Thesis 10, Mid Sweden University, Östersund, 2004.
[22] S. Spagnolo:
Sul limite delle soluzioni di problemi di Cauchy relativi all’equazione del calore. Ann. Scuola Norm. Super. Pisa, Sci. Fis. Mat, III. Ser. 21 (1967), 657–699. (Italian)
MR 0225015 |
Zbl 0153.42103
[23] S. Spagnolo:
Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Sculoa Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 22 (1968), 571–597. (Italian)
MR 0240443
[24] S. Spagnolo:
Convergence in energy for elliptic operators. In: Proc. 3rd Symp. Numer. Solut. Partial Differ. Equat., College Park, 1975, Academic Press, San Diego, 1976, pp. 469–498.
MR 0477444 |
Zbl 0347.65034
[25] L. Tartar: Homogénéisation et compacité par compensation. Cours Peccot, Collège de France, Paris, March 1977. Unpublished, partly written in [15].
[26] L. Tartar:
Compensated compactness and applications to partial differential equations. Nonlinear Analysis and Mechanics, Heriott-Watt Symposium. Res. Notes Math. 39, Vol. 4, R. J. Knops (ed.), Pitman, Boston-London, 1979, pp. 136–212.
MR 0584398 |
Zbl 0437.35004
[27] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik:
Homogenization of Differential Operators and Variational Problems. Springer-Verlag, Berlin, 1994.
MR 1329546