[1] M. Ainsworth, J. T. Oden:
A Posteriori Error Estimation in Finite Element Analysis. John Wiley & Sons, , 2000.
MR 1885308
[2] I. Babuška, T. Strouboulis:
The Finite Element Method and Its Reliability. Oxford University Press, New York, 2001.
MR 1857191
[3] W. Bangerth, R. Rannacher:
Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics ETH Zürich. Birkhäuser-Verlag, Basel, 2003.
MR 1960405
[4] R. Becker, R. Rannacher:
A feed-back approach to error control in finite element methods: Basic analysis and examples. East-West J. Numer. Math. 4 (1996), 237–264.
MR 1430239
[6] C. Carstensen, S. A. Funken:
Constants in Clément-interpolation error and residual based a posteriori error estimates in finite element methods. East-West J. Numer. Math. 8 (2000), 153–175.
MR 1807259
[7] Ph. G. Ciarlet:
The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications, Vol. 4. North-Holland Publishing, Amsterdam-New York-Oxford, 1978.
MR 0520174
[8] K. Eriksson, D. Estep, P. Hansbo, C. Johnson:
Introduction to adaptive methods for differential equations. Acta Numerica, A. Israel (ed.), Cambridge University Press, Cambridge, 1995, pp. 106–158.
MR 1352472
[9] I. Faragó, J. Karátson:
Numerical Solution of Nonlinear Elliptic Problems via Preconditioning Operators: Theory and Applications. Advances in Computation. Theory and Practice, Vol. 11. Nova Science Publishers, Huntigton, 2002.
MR 2106499
[10] W. Han:
A Posteriori Error Analysis via Duality Theory. With Applications in Modeling and Numerical Approximations. Advances in Mechanics and Mathematics, Vol. 8. Springer-Verlag, New York, 2005.
MR 2101057
[11] A. Hannukainen, S. Korotov:
Techniques for a posteriori error estimation in terms of linear functionals for elliptic type boundary value problems. Far East J. Appl. Math. 21 (2005), 289–304.
MR 2216003
[12] A. Hannukainen, S. Korotov:
Computational technologies for reliable control of global and local errors for linear elliptic type boundary value problems. Preprint A494. Helsinki University of Technology (February 2006); accepted by JNAIAM, J. Numer. Anal. Ind. Appl. Math. in 2007.
MR 2376087
[13] I. Hlaváček, J. Chleboun, and I. Babuška:
Uncertain Input Data Problems and the Worst Scenario Method. Elsevier, Amsterdam, 2004.
MR 2285091
[14] I. Hlaváček, M. Křížek:
On a superconvergent finite element scheme for elliptic systems I, II, III. Apl. Mat. 32 (1987), 131–154, 200–213, 276–289.
MR 0895878
[15] S. Korotov:
A posteriori error estimation for linear elliptic problems with mixed boundary conditions. Preprint A495, Helsinki University of Techology (March 2006).
MR 2219926
[17] S. Korotov, P. Neittaanmäki, and S. Repin:
A posteriori error estimation of goal-oriented quantities by superconvergence patch recovery. J. Numer. Math. 11 (2003), 33–59.
DOI 10.1163/156939503322004882 |
MR 1976438
[18] M. Křížek, P. Neittaanmäki:
Mathematical and Numerical Modelling in Electrical Engineering. Theory and Practice. Mathematical Modelling: Theory and Applications, Vol. 1. Kluwer Academic Publishers, Dordrecht, 1996.
MR 1431889
[20] S. G. Mikhlin:
Constants in Some Inequalities of Analysis. A Wiley-Interscience Publication. John Wiley & Sons, Chichester, 1986.
MR 0853915
[21] P. Neittaanmäki, S. Repin:
Reliable Methods for Computer Simulation. Error Control and A Posteriori Estimates. Studies in Mathematics and its Applications, Vol. 33. Elsevier, Amsterdam, 2004.
MR 2095603
[22] J. Nečas:
Les Méthodes Directes en Théorie des Équations Elliptiques. Academia, Prague, 1967.
MR 0227584
[24] S. Repin:
A posteriori error estimation for nonlinear variational problems by duality theory. Zap. Nauchn. Semin. S.-Peterburg, Otdel. Mat. Inst. Steklov. (POMI) 243 (1997), 201–214.
MR 1629741 |
Zbl 0904.65064
[25] S. Repin:
Two-sided estimates of deviation from exact solutions of uniformly elliptic equations. Amer. Math. Soc. Transl. 209 (2003), 143–171.
DOI 10.1090/trans2/209/06 |
MR 2018375
[26] S. Repin, M. Frolov:
A posteriori estimates for the accuracy of approximate solutions of boundary value problems for equations of elliptic type. Zh. Vychisl. Mat. Mat. Fiz. 42 (2002), 1774–1787 (in Russian).
MR 1971889
[27] S. Repin, S. Sauter, A. Smolianski:
A posteriori error estimation for the Dirichlet problem with account of the error in the approximation of boundary conditions. Computing 70 (2003), 205–233.
DOI 10.1007/s00607-003-0013-7 |
MR 2011610
[28] S. Repin, S. Sauter, A. Smolianski:
A posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions. J. Comput. Appl. Math. 164/165 (2004), 601–612.
DOI 10.1016/S0377-0427(03)00491-6 |
MR 2056902
[29] M. Rüter, S. Korotov, and Ch. Steenbock:
Goal-oriented error estimates based on different FE-solution spaces for the primal and the dual problem with applications to fracture mechanics. Comput. Mech. 39 (2007), 787–797.
DOI 10.1007/s00466-006-0069-2 |
MR 2298591
[30] M. Rüter, E. Stein:
Goal-oriented a posteriori error estimates in linear elastic fracture mechanics. Comput. Methods Appl. Mech. Eng. 195 (2006), 251–278.
DOI 10.1016/j.cma.2004.05.032 |
MR 2186137
[32] R. Verfürth: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Stuttgart, 1996.
[33] O. C. Zienkiewicz, J. Z. Zhu:
A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng. 24 (1987), 337–357.
DOI 10.1002/nme.1620240206 |
MR 0875306