[1] M. Brio, A. R. Zakharian, and G. M. Webb:
Two-dimensional Riemann solver for Euler equations of gas dynamics. J. Comput. Phys. 167 (2001), 177–195.
DOI 10.1006/jcph.2000.6666
[2] M. Fey:
Multidimensional upwinding, Part II. Decomposition of the Euler equations into advection equations. J. Comput. Phys. 143 (1998), 181–199.
DOI 10.1006/jcph.1998.5959 |
MR 1624688
[4] A. Kurganov, S. Noelle, and G. Petrova:
Semidiscrete central-unpwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23 (2001), 707–740.
DOI 10.1137/S1064827500373413 |
MR 1860961
[5] R. J. LeVeque:
Wave propagation algorithms for multidimensional hyperbolic systems. J. Comput. Phys. 131 (1997), 327–353.
Zbl 0872.76075
[6] J. Li, M. Lukáčová-Medviďová, G. Warnecke:
Evolution Galerkin schemes for the two-dimensional Riemann problems for the wave equation systems. Discrete Contin. Dyn. Syst. (A) 9 (2003), 559–576.
DOI 10.3934/dcds.2003.9.559 |
MR 1974525
[7] M. Lukáčová-Medviďová, K. W. Morton, and G. Warnecke:
Evolution Galerkin methods for hyperbolic systems in two space dimensions. Math. Comput. 69 (2000), 1355–1384.
DOI 10.1090/S0025-5718-00-01228-X |
MR 1709154
[8] M. Lukáčová-Medviďová, K. W. Morton, and G. Warnecke:
Finite volume evolution Galerkin methods for Euler equations of gas dynamics. Internat. J. Numer. Methods Fluids 40 (2002), 425–434.
DOI 10.1002/fld.297 |
MR 1932992
[9] M. Lukáčová-Medviďová, K. W. Morton, and G. Warnecke:
Finite volume evolution Galerkin (FVEG) methods for hyperbolic systems. SIAM J. Sci. Comput. 26 (2004), 1–30.
DOI 10.1137/S1064827502419439 |
MR 2114332
[10] M. Lukáčová-Medviďová, J. Saibertová, and G. Warnecke:
Finite volume evolution Galerkin methods for nonlinear hyperbolic systems. J. Comput. Phys. 183 (2002), 533–562.
MR 1947781
[11] M. Lukáčová-Medviďová, G. Warnecke:
Lax-Wendroff type second order evolution Galerkin methods for multidimensional hyperbolic systems. East-West Numer. Math. 8 (2000), 127–152.
MR 1773188
[12] M. Lukáčová-Medviďová, G. Warnecke, and Y. Zahaykah:
On the stability of the evolution Galerkin schemes applied to a two-dimensional wave equation system. SIAM J. Numer. Anal. (2006), In print.
MR 2257117
[14] S. Noelle:
The MOT-ICE: a new high-resolution wave-propagation algorithm for multi-dimensional systems of conservative laws based on Fey’s method of transport. J. Comput. Phys. 164 (2000), 283–334.
DOI 10.1006/jcph.2000.6598 |
MR 1792514
[16] S. Ostkamp:
Multidimensional characteristic Galerkin schemes and evolution operators for hyperbolic systems. PhD. thesis, University Hannover, 1995.
MR 1361170 |
Zbl 0831.76067
[17] J. Saibertová: Genuinely multidimensional finite volume schemes for systems of conservation laws. PhD. thesis, Technical University Brno, 2003.
[18] Y. Zahaykah: Evolution Galerkin schemes and discrete boundary conditions for multidimensional first order systems. PhD. thesis, University of Magdeburg, 2002.