[1] I. Babuška, A. K. Aziz:
Survey lectures on the mathematical foundations of the finite element method. Math. Found. Finite Elem. Method Appl. Part. Differ. Equations, A. K. Aziz (ed.), Academic Press, New York, 1972, pp. 1–359.
MR 0421106
[2] I. Babuška, T. Strouboulis, C. S. Upadhyay, and S. K. Gangaray:
Computer-based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in the finite element solutions of Laplace’s, Poisson’s, and elasticity equations. Numer. Methods Partial Differ. Equations 12 (1996), 347–392.
DOI 10.1002/num.1690120303 |
MR 1388445
[4] J. Brandts, M. Křížek:
Superconvergence of tetrahedral quadratic finite elements. J. Comput. Math. 23 (2005), 27–36.
MR 2124141
[6] P. Clément:
Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975), 77–84.
MR 0400739
[7] C. M. Chen: Optimal points of stresses for tetrahedron linear element. Natur. Sci. J. Xiangtan Univ. 3 (1980), 16–24. (Chinese)
[8] L. Chen:
Superconvergence of tetrahedral linear finite elements. Internat. J. Numer. Anal. Model. 3 (2006), 273–282.
MR 2237882
[9] P. G. Ciarlet:
The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.
MR 0520174 |
Zbl 0383.65058
[10] G. Goodsell, J. R. Whiteman:
Pointwise superconvergence of recovered gradients for piecewise linear finite element approximations to problems of planar linear elasticity. Numer. Methods Partial Differ. Equations 6 (1990), 59–74.
DOI 10.1002/num.1690060105 |
MR 1034433
[11] I. Hlaváček, M. Křížek:
On a superconvergent finite element scheme for elliptic systems. I. Dirichlet boundary condition. Apl. Mat. 32 (1987), 131–154.
MR 0885758
[12] V. Kantchev, R. Lazarov: Superconvergence of the gradient of linear finite elements for 3D Poisson equation. In: Proc. Int. Symp. Optimal Algorithms, B. Sendov (ed.), Bulgarian Acad. Sci., Sofia, 1986, pp. 172–182.
[14] M. Křížek, P. Neittaanmäki:
Finite Element Approximation of Variational Problems and Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics Vol. 50. Longman Scientific & Technical, Harlow, 1990.
MR 1066462
[15] M. Křížek, P. Neittaanmäki:
Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications. Kluwer Academic Publishers, Dordrecht, 1996.
MR 1431889
[18] Q. Lin, N. N. Yan: The Construction and Analysis for Efficient Finite Elements. Hebei Univ. Publ. House, , 1996. (Chinese)
[19] L. A. Oganesjan, L. A. Ruhovec:
An investigation of the rate of convergence of variational-difference schemes for second order elliptic equations in a two-dimensional region with smooth boundary. Ž. Vyčisl. Mat. i Mat. Fiz. 9 (1969), 1102–1120. (Russian)
MR 0295599
[20] P. Tong:
Exact solutions of certain problems by finite-element method. AIAA J. 7 (1969), 178–180.
DOI 10.2514/3.5067
[21] L. B. Wahlbin:
Superconvergence in Galerkin Finite Element Methods. Lecture Notes in Math. Vol. 1605. Springer-Verlag, Berlin, 1995.
MR 1439050
[23] Q. D. Zhu: The derivative good points for the finite element method with 2-degree triangular element. Nat. Sci. J. Xiangtan Univ. 1 (1981), 36–44. (Chinese)