[2] J. Berkovits, P. Drábek, H. Leinfelder, V. Mustonen, and G. Tajčová:
Time-periodic oscillations in suspension bridges: Existence of unique solution. Nonlinear Anal., Real World Appl. 1 (2000), 345–362.
MR 1791531
[5] J. Glover, A. C. Lazer, and P. J. McKenna:
Existence and stability of large-scale nonlinear oscillations in suspension bridges. Z. Angew. Math. Phys. 40 (1989), 171–200.
DOI 10.1007/BF00944997 |
MR 0990626
[6] A. Kufner, O. John, S. Fučík: Functional spaces. Academia, Prague, 1977.
[8] A. C. Lazer, P. J. McKenna:
Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis. SIAM Rev. 32 (1990), 537–578.
DOI 10.1137/1032120 |
MR 1084570
[9] A. C. Lazer, P. J. McKenna:
Existence, uniqueness, and stability of oscillations in differential equations with asymmetric nonlinearities. Trans. Am. Math. Soc. 315 (1989), 721–739.
DOI 10.1090/S0002-9947-1989-0979963-1 |
MR 0979963
[10] P. J. McKenna, W. Walter:
Nonlinear oscillations in a suspension bridge. Arch. Rational Mech. Anal. 98 (1987), 167–190.
DOI 10.1007/BF00251232 |
MR 0866720
[12] J. Malík:
Oscillations in cable stayed bridges: existence, uniqueness, homogenization of cable systems. J. Math. Anal. Appl. 226 (2002), 100–126.
DOI 10.1006/jmaa.2001.7713 |
MR 1876772
[14] E. Simiu, R. H. Scanlan: Wind Effects on Structures: An Introduction to Wind Engineering. John Wiley, New York, 1978.
[15] S. L. Sobolev:
Applications of Functional Analysis in Mathematical Physics. American Mathematical Society, Providence, 1963.
MR 0165337 |
Zbl 0123.09003
[18] R. Walther, B. Houriet, W. Isler, P. Moïa, and J. F. Klein: Cable Stayed Bridges. Thomas Telford, London, 1999.
[19] K. Yosida:
Functional Analysis. Springer-Verlag, Berlin-Götingen-Heidelberg, 1965.
Zbl 0126.11504