[2] O. Axelsson, I. Kaporin:
On the sublinear and superlinear rate of convergence of conjugate gradient methods. Mathematical journey through analysis, matrix theory and scientific computation (Kent, OH, 1999). Numer. Algorithms 25 (2000), 1–22.
DOI 10.1023/A:1016694031362 |
MR 1827142
[3] O. Axelsson, J. Karátson:
On the rate of convergence of the conjugate gradient method for linear operators in Hilbert space. Numer. Funct. Anal. Optmization 23 (2002), 285–302.
DOI 10.1081/NFA-120006694 |
MR 1914497
[4] O. Axelsson, J. Karátson:
Superlinearly convergent CG methods via equivalent preconditioning for nonsymmetric elliptic operators. Numer. Math. 99 (2004), 197–223, SpringerLink DOI: 10.1007/s00211-004-0557-2 (electronic).
DOI 10.1007/s00211-004-0557-2 |
MR 2107430
[5] R. E. Bank, D. J. Rose:
Marching algorithms for elliptic boundary value problems. I. The constant coefficient case. SIAM J. Numer. Anal. 14 (1977), 792–829.
DOI 10.1137/0714055 |
MR 0502000
[8] P. Concus, G. H. Golub:
Use of fast direct methods for the efficient numerical solution of nonseparable elliptic equations. SIAM J. Numer. Anal. 10 (1973), 1103–1120.
DOI 10.1137/0710092 |
MR 0341890
[10] H. C. Elman, M. H. Schultz:
Preconditioning by fast direct methods for nonself-adjoint nonseparable elliptic equations. SIAM J. Numer. Anal. 23 (1986), 44–57.
DOI 10.1137/0723004 |
MR 0821905
[11] V. Faber, T. Manteuffel, and S. V. Parter:
On the theory of equivalent operators and application to the numerical solution of uniformly elliptic partial differential equations. Adv. Appl. Math. 11 (1990), 109–163.
DOI 10.1016/0196-8858(90)90007-L |
MR 1053227
[12] I. Faragó, J. Karátson:
Numerical solution of nonlinear elliptic problems via preconditioning operators. Theory and applications. Advances in Computation, Vol. 11, NOVA Science Publishers, Huntington, 2002.
MR 2106499
[14] I. Gohberg, S. Goldberg, and M. A. Kaashoek:
Classes of linear operators, Vol. I. Operator Theory: Advances and Applications, Vol. 49, Birkhäuser-Verlag, Basel, 1990.
MR 1130394
[15] R. M. Hayes:
Iterative methods of solving linear problems in Hilbert space. Natl. Bur. Stand.; Appl. Math. Ser. 39 (1954), 71–103.
MR 0066563
[16] M. R. Hestenes, E. Stiefel:
Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand., Sect. B 49 (1952), 409–436.
DOI 10.6028/jres.049.044 |
MR 0060307
[17] J. Kadlec:
On the regularity of the solution of the Poisson problem on a domain with boundary locally similar to the boundary of a convex open set. Czechoslovak Math. J. 14(89) (1964), 386–393. (Russian)
MR 0170088 |
Zbl 0166.37703
[18] J. Karátson, I. Faragó:
Variable preconditioning via quasi-Newton methods for nonlinear problems in Hilbert space. SIAM J. Numer. Anal. 41 (2003), 1242–1262.
DOI 10.1137/S0036142901384277 |
MR 2034879
[20] J. W. Neuberger:
Sobolev gradients and differential equations. Lecture Notes in Math., No. 1670, Springer-Verlag, Berlin, 1997.
MR 1624197 |
Zbl 0935.35002
[21] T. Rossi, J. Toivanen:
A parallel fast direct solver for block tridiagonal systems with separable matrices of arbitrary dimension. SIAM J. Sci. Comput. 20 (1999), 1778–1793.
DOI 10.1137/S1064827597317016 |
MR 1694683
[22] T. Rossi, J. Toivanen:
Parallel fictitious domain method for a non-linear elliptic Neumann boundary value problem. Czech-US Workshop in Iterative Methods and Parallel Computing, Part I (Milovy, 1997). Numer. Linear Algebra Appl. 6 (1999), 51–60.
MR 1684652
[24] F. Riesz, B. Sz.-Nagy:
Vorlesungen über Funktionalanalysis. VEB Deutscher Verlag der Wissenschaften, Berlin, 1982.
Zbl 0483.47001
[25] L. Simon, E. Baderko: Linear Partial Differential Equations of Second Order. Tankönyvkiadó, Budapest, 1983. (Hungarian)
[26] P. N. Swarztrauber:
The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson’s equation on a rectangle. SIAM Rev. 19 (1977), 490–501.
DOI 10.1137/1019071 |
MR 0438732 |
Zbl 0358.65088
[27] Yu. V. Vorobyev:
Methods of Moments in Applied Mathematics. Gordon and Breach, New York, 1965.
MR 0184400 |
Zbl 0196.47601
[28] R. Winter:
Some superlinear convergence results for the conjugate gradient method. SIAM J. Numer. Anal. 17 (1980), 14–17.
DOI 10.1137/0717002 |
MR 0559456