[1] O. Axelsson, V. A. Barker:
Finite Element Solution of Boundary Value Problems. Theory and Computation. Academic Press, Orlando, 1984.
MR 0758437
[2] O. Axelsson, M. Neytcheva:
Preconditioning methods for constrained optimization problems. Numer. Linear Algebra Appl. 10 (2003), 3–31.
DOI 10.1002/nla.310 |
MR 1964284
[5] M. Benzi, G. Golub, and J. Liesen:
Numerical solution of saddle point problems. Acta Numer (to appear).
MR 2168342
[6] W. Bangerth, R. Hartmann, and G. Kanschat:
deal.II Differential Equations Analysis Library, Technical Reference, IWR, http://www.dealii.org</b>
[9] H. C. Elman, D. Silvester:
Fast nonsymmetric iterations and preconditioning for Navier-Stokes equations. SIAM J. Sci. Comput. 17 (1996), 33–46.
DOI 10.1137/0917004 |
MR 1375264
[10] H. Elman, D. Silvester, A. J. Wathen:
Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations. Numer. Math. 90 (2002), 665–688.
DOI 10.1007/s002110100300 |
MR 1888834
[13] A. Klawonn, G. Starke:
Block triangular preconditioners for nonsymmetric saddle point problems: Field-of-values analysis. Numer. Math. 81 (1999), 577–594.
DOI 10.1007/s002110050405 |
MR 1675216
[14] V. Klemann, P. Wu, and D. Wolf:
Compressible viscoelasticity: stability of solutions for homogeneous plane-Earth models. Geophys. J. 153 (2003), 569–585.
DOI 10.1046/j.1365-246X.2003.01920.x
[15] J. K. Kraus: Algebraic multilevel preconditioning of finite element matrices using local Schur complements. Submitted.
[16] B. Liu, R. B. Kellogg:
Discontinuous solutions of linearized steady state viscous compressible flows. J. Math. Anal. Appl. 180 (1993), 469–497.
DOI 10.1006/jmaa.1993.1412 |
MR 1251871
[18] J. Nedoma: Numerical Modelling in Applied Geodynamics. John Wiley & Sons, New York, 2000.
[20] Y. Saad:
SPARSKIT: A basic tool-kit for sparse matrix computations. Technical Documentation,
http://www-users.cs.umn.edu/$\sim $saad/software/SPARSKIT/sparskit.html.
[21] S. Shaw, M. K. Warby, J. R. Whiteman, C. Dawson, and M. F. Wheeler:
Numerical techniques for the treatment of quasistatic viscoelastic stress problems in linear isotropic solids. Comput. Methods Appl. Mech. Eng. 118 (1994), 211–237.
MR 1298954
[23] P. Wu:
Using commercial finite element packages for the study of earth deformations, sea levels and the state of stress. Internat. J. Geophys. 158 (2004), 401–408.
DOI 10.1111/j.1365-246X.2004.02338.x
[24] Portable, Extensible Toolkit for Scientific computation (PETSc) suite. Mathematics and Computer Science Division, Argonne Natinal Laboratory,.