[1] R. Abeyaratne, J. K. Knowles:
Kinetic relations and the propagation of phase boundaries in solids. Arch. Rational Mech. Anal. 114 (1991), 119–154.
DOI 10.1007/BF00375400 |
MR 1094433
[3] D. Amadori, R. M. Colombo:
Continuous dependence for $2\times 2$ conservation laws with boundary. J. Differential Equations 138 (1997), 229–266.
DOI 10.1006/jdeq.1997.3274 |
MR 1462268
[4] D. Amadori, R. M. Colombo:
Viscosity solutions and standard Riemann semigroup for conservation laws with boundary. Rend. Sem. Mat. Univ. Padova 99 (1998), 219–245.
MR 1636611
[5] D. Amadori, L. Gosse, and G. Guerra:
Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws. Arch. Rational Mech. Anal. 162 (2002), 327–366.
DOI 10.1007/s002050200198 |
MR 1904499
[6] D. Amadori, G. Guerra:
Uniqueness and continuous dependence for systems of balance laws with dissipation. Nonlinear Anal. 49A (2002), 987–1014.
MR 1895539
[7] F. Ancona, G. M. Coclite:
On the attainable set for Temple class systems with boundary controls. Preprint (2002).
MR 2179483
[8] F. Ancona, A. Marson:
On the attainable set for scalar nonlinear conservation laws with boundary control. SIAM J. Control Optim. 36 (1998), 290–312.
DOI 10.1137/S0363012996304407 |
MR 1616586
[9] F. Ancona, A. Marson: $L^1$-stability for $n\times n$ non genuinely nonlinear conservation laws. Preprint (2000).
[10] F. Ancona, A. Marson:
A wavefront tracking algorithm for $N\times N$ nongenuinely nonlinear conservation laws. J. Differential Equations 177 (2001), 454–493.
DOI 10.1006/jdeq.2000.4012 |
MR 1876651
[12] P. Baiti, A. Bressan:
The semigroup generated by a Temple class system with large data. Differential Integral Equations 10 (1997), 401–418.
MR 1744853
[14] P. Baiti and H. K. Jenssen:
Blowup in $L^\infty $ for a class of genuinely nonlinear hyperbolic systems of conservation laws. Discrete Contin. Dynam. Systems 7 (2001), 837–853.
DOI 10.3934/dcds.2001.7.837 |
MR 1849664
[15] S. Bianchini:
The semigroup generated by a Temple class system with non-convex flux function. Differential Integral Equations 13 (2000), 1529–1550.
MR 1787080 |
Zbl 1043.35110
[16] S. Bianchini, A. Bressan:
Vanishing viscosity solutions of nonlinear hyperbolic systems. Annals of Mathematics (to appear).
MR 2150387
[17] S. Bianchini, R. M. Colombo:
On the stability of the standard Riemann semigroup. Proc. Amer. Math. Soc. 130 (2002), 1961–1973 (electronic).
MR 1896028
[20] A. Bressan:
The semigroup approach to systems of conservation laws. Fourth Workshop on Partial Differential Equations, Part I (Rio de Janeiro, 1995). Math. Contemp. 10 (1996), 21–74.
MR 1425453
[21] A. Bressan:
Uniqueness and stability of weak solutions to systems of conservation laws. In: Proceedings of the 9th International Conference on Waves and Stability in Continuous Media (Bari, 1997), Suppl. Rend. Circ. Mat. Palermo (2), Ser. 57, 1998, pp. 69–78.
MR 1708496 |
Zbl 0941.35048
[22] A. Bressan:
Hyperbolic Systems of Conservation Laws. Oxford Lecture Series in Mathematics and its Applications, Vol. 20, Oxford University Press, Oxford, 2000.
MR 1816648 |
Zbl 1157.35421
[23] A. Bressan:
The front tracking method for systems of conservation laws. In: Handbook of Partial Differential Equations, C. M. Dafermos, and E. Feireisl (eds.), Elsevier. To appear.
MR 2103697
[25] A. Bressan, R. M. Colombo:
The semigroup generated by $2\times 2$ conservation laws. Arch. Rational Mech. Anal. 133 (1995), 1–75.
DOI 10.1007/BF00375350 |
MR 1367356
[26] A. Bressan, R. M. Colombo:
Unique solutions of $2\times 2$ conservation laws with large data. Indiana Univ. Math. J. 44 (1995), 677–725.
MR 1375345
[27] A. Bressan, R. M. Colombo:
Decay of positive waves in nonlinear systems of conservation laws. Ann. Scuola Norm. Sup. Pisa Cl. Sci. IV 26 (1998), 133–160.
MR 1632980
[28] A. Bressan, G. Crasta, and B. Piccoli:
Well-posedness of the Cauchy problem for $n\times n$ systems of conservation laws. Mem. Amer. Math. Soc. 146(694), 2000.
MR 1686652
[29] A. Bressan, P. Goatin:
Oleinik type estimates and uniqueness for $n\times n$ conservation laws. J. Differential Equations 156 (1999), 26–49.
DOI 10.1006/jdeq.1998.3606 |
MR 1701818
[30] A. Bressan, G. Guerra:
Shift-differentiability of the flow generated by a conservation law. Discrete Contin. Dynam. Systems 3 (1997), 35–58.
DOI 10.3934/dcds.1997.3.35 |
MR 1422538
[31] A. Bressan, P. G. LeFloch:
Uniqueness of weak solutions to systems of conservation laws. Arch. Rational Mech. Anal. 140 (1997), 301–317.
DOI 10.1007/s002050050068 |
MR 1489317
[32] A. Bressan, P. G. LeFloch:
Structural stability and regularity of entropy solutions to hyperbolic systems of conservation laws. Indiana Univ. Math. J. 48 (1999), 43–84.
MR 1722193
[33] A. Bressan, M. Lewicka:
Shift differentials of maps in BV spaces. In: Nonlinear Theory of Generalized Function (Vienna, 1997), Vol. 401 of Chapman & Hall/CRC Res. Notes Math, 401, Chapman & Hall/CRC, Boca Raton, 1999, pp. 47–61.
MR 1699858
[34] A. Bressan, T.-P. Liu, and T. Yang:
$L^1$ stability estimates for $n\times n$ conservation laws. Arch. Rational Mech. Anal. 149 (1999), 1–22.
DOI 10.1007/s002050050165 |
MR 1723032
[37] R. M. Colombo, A. Corli:
Sonic hyperbolic phase transitions and Chapman-Jouguet detonations. J. Differential Equations 184 (2002), 321–347.
DOI 10.1006/jdeq.2001.4131 |
MR 1929881
[39] R. M. Colombo, A. Corli:
A semilinear structure on semigroups in a metric space. Semigroup Forum (to appear).
MR 2050900
[40] R. M. Colombo, A. Groli:
Minimising stop & go waves to optimise traffic flow. Appl. Math. Letters (to appear).
MR 2064183
[43] R. M. Colombo, F. S. Priuli:
Characterization of Riemann solvers for the two phase $p$-system. Comm. Partial Differential Equations 28 (2003), 1371–1389.
DOI 10.1081/PDE-120024372 |
MR 1998941
[44] R. M. Colombo, N. H. Risebro:
Continuous dependence in the large for some equations of gas dynamics. Comm. Partial Differential Equations 23 (1998), 1693–1718.
DOI 10.1080/03605309808821397 |
MR 1641709
[45] G. Crasta, B. Piccoli:
Viscosity solutions and uniqueness for systems of inhomogeneous balance laws. Discrete Contin. Dynam. Systems 3 (1997), 477–502.
MR 1465122
[48] C. M. Dafermos:
Hyperbolic Conservation Laws in Continuum Physics. Springer-Verlag, Berlin, first edition, 2000.
MR 1763936 |
Zbl 0940.35002
[49] C. M. Dafermos, X. Geng:
Generalised characteristics in hyperbolic systems of conservation laws with special coupling. Proc. Roy. Soc. Edinburgh Sect. A 116 (1990), 245–278.
MR 1084734
[50] C. M. Dafermos, X. Geng:
Generalized characteristics, uniqueness and regularity of solutions in a hyperbolic system of conservation laws. Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), 231–269.
DOI 10.1016/S0294-1449(16)30263-3 |
MR 1127926
[53] H. Holden, N. H. Risebro:
Front Tracking for Hyperbolic Conservation Laws. Applied Mathematical Sciences Vol. 152. Springer-Verlag, Berlin, 2002.
MR 1912206
[56] P. G. LeFloch:
Hyperbolic Systems of Conservation Laws. The Theory of Classical and Nonclassical shock waves Lectures in Mathematics ETH Zürich. Birkhäuser-Verlag, Basel, 2002.
MR 1927887
[57] M. Lewicka:
$L^1$ stability of patterns of non-interacting large shock waves. Indiana Univ. Math. J. 49 (2000), 1515–1537.
MR 1836539
[58] M. Lewicka, K. Trivisa:
On the $L^1$ well-posedness of systems of conservation laws near solutions containing two large shocks. J. Differential Equations 179 (2002), 133–177.
DOI 10.1006/jdeq.2000.4000 |
MR 1883740
[63] Y. Lu:
Hyperbolic Conservation Laws and the Compensated Compactness Method. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Vol. 128. Chapman & Hall/CRC, Boca Raton, 2003.
MR 1936672
[65] S. Schochet:
The essence of Glimm’s scheme. In: Nonlinear Evolutionary Partial Differential Equations (Beijing, 1993), AMS/IP Stud. Adv. Math., Vol. 3, Amer. Math. Soc., Providence, 1997, pp. 355–362.
MR 1468507 |
Zbl 0882.35009
[67] D. Serre:
Systems of Conservation Laws, 1 & 2. Cambridge University Press, Cambridge, 1999, 2000, translated from the 1996 French original by I. N. Sneddon.
MR 1707279
[70] B. Temple:
$L^1$-contractive metrics for systems of conservation laws. Trans. Amer. Math. Soc. 288 (1985), 471–480.
MR 0776388
[71] Z. H. Teng, A. J. Chorin, and T. P. Liu:
Riemann problems for reacting gas, with applications to transition. SIAM J. Appl. Math. 42 (1982), 964–981.
DOI 10.1137/0142069 |
MR 0673521
[72] K. Trivisa:
A priori estimates in hyperbolic systems of conservation laws via generalized characteristics. Comm. Partial Differential Equations 22 (1997), 235–267.
MR 1434145 |
Zbl 0881.35018