Article
Keywords:
extensions satisfying prescribed boundary conditions; Nikolskij extension theorem
Summary:
Extensions from $H^1(\Omega _P)$ into $H^1(\Omega )$ (where $\Omega _P\subset \Omega $) are constructed in such a way that extended functions satisfy prescribed boundary conditions on the boundary $\partial \Omega $ of $\Omega $. The corresponding extension operator is linear and bounded.
References:
[1] A. Kufner, O. John, and S. Fučík:
Function Spaces. Academia, Prague, 1977.
MR 0482102
[2] J. Nečas:
Les Méthodes Directes en Théorie des Equations Elliptiques. Academia/Masson, Prague/Paris, 1967.
MR 0227584
[3] J. Nečas, I. Hlaváček:
Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction. Elsevier, Amsterdam, 1981.
MR 0600655
[4] A. Ženíšek:
Finite element variational crimes in parabolic-elliptic problems. Part I. Nonlinear schemes. Numer. Math. 55 (1989), 343–376.
DOI 10.1007/BF01390058 |
MR 0993476
[5] A. Ženíšek:
Nonlinear Elliptic and Evolution Problems and their Finite Element Approximations. Academic Press, London, 1990.
MR 1086876