[2] I. Bock, J. Lovíšek:
An optimal control problem for a pseudoparabolic variational inequality. Appl. Math. 37 (1992), 62–80.
MR 1152158
[3] R. M. Christensen: Theory of Viscoelasticity. Academic Press, New York, 1982.
[4] P. G. Ciarlet:
The Finite Element Method for Elliptic Problems. Studies in Mathematics and Applications 4, North Holland, Amsterdam, 1978.
MR 0520174 |
Zbl 0383.65058
[7] I. Hlaváček:
Reliable solution of problems in the deformation theory of plasticity with respect to uncertain material function. Appl. Math. 41 (1996), 447–466.
MR 1415251
[9] I. Hlaváček:
Reliable solution of a a perfect plastic problem with uncertain stress-strain law and yield function. SIAM J. Numer. Anal. 39 (2001), 1531–1555.
MR 1885706
[10] J. Kačur:
Method of Rothe in Evolution Equations. Teubner, Leipzig, 1985.
MR 0834176
[11] J. Kačur:
Application of Rothe’s method to integro-differential equations. J. Reine Angew. Math. 388 (1988), 73–105.
MR 0944184
[12] J. Nečas:
Les méthodes directes en théorie des équations elliptiques. Academia, Praha, 1967.
MR 0227584
[13] J. Nečas, I. Hlaváček: Mathematical Theory of Elastic and Elastoplastic Bodies: An Introduction. Studies in Applied Mathematics 3. Elsevier, 1981.
[14] K. Rektorys:
The Method of Discretization in Time and Partial Differential Equations. Reidel, Dordrecht-Boston-London, 1982.
MR 0689712 |
Zbl 0522.65059
[15] S. Shaw, J. R. Whiteman:
Adaptive space-time finite element solution for Volterra equations arising in viscoelastic problems. J. Comput. Appl. Math. (4) 125 (2000), 1234–1257.
MR 1803200
[16] J. Simon:
Compact sets in the space $L^p(0,T;B)$. Ann. Mat. Pura Appl., IV. Ser. 146 (1987), 65–96.
MR 0916688