Previous |  Up |  Next

Article

Keywords:
Rothe’s method; method of lines; convergence of Rothe’s method
Summary:
The convergence of Rothe’s method in Hölder spaces is discussed. The obtained results are based on uniform boundedness of Rothe’s approximate solutions in Hölder spaces recently achieved by the first author. The convergence and its rate are derived inside a parabolic cylinder assuming an additional compatibility conditions.
References:
[1] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin-Heidelberg-Tokyo, 1983. MR 0737190
[2] M. Dreher, V. Pluschke: Local solutions of weakly parabolic semilinear differential equations. Math. Nachr. 200 (1999), 5–20. DOI 10.1002/mana.19992000102 | MR 1682789
[3] Ch. Grossman, M. Krätzschmar, H.-G. Roos: Gleichmäßig einschließende Diskretisierungsverfahren für schwach nichtlineare Randwertaufgaben. Numer. Math. 49 (1986), 95–110. DOI 10.1007/BF01389432 | MR 0847020
[4] J. Kačur: On $L_{\infty }$-convergence of Rothe’s method. Comment. Math. Univ. Carolin. 30 (1989), 505–510. MR 1031868
[5] J. Kačur: Application of Rothe’s method to evolution integro-differential equations. J.  Reine Angew. Math. 388 (1988), 73–105. MR 0944184
[6] N. Kikuchi: Hölder estimates of solutions to difference-differential equations of elliptic-parabolic type. J. Geom. Anal. 10 (2000), 525–538.
[7] N. Kikuchi: On a method of constructing Morse flows to variational functionals. Nonlinear World 1 (1994), 131–147. MR 1297075
[8] G. Koeffe, H.-G. Roos, L. Tobiska: An enclosure generating modification of the method of discretization in time. Comment. Math. Univ. Carolin. 28 (1982), 441–447. MR 0912574
[9] V. Pluschke: $L_{\infty }$-estimates and uniform convergence of Rothe’s method for quasilinear parabolic differential equations. Methoden Verfahren Math. Phys. Vol 37, K. Kleinman et al. (eds.), Peter Lang-Verlag, 1991, pp. 187–199. MR 1215747
[10] V. Pluschke: Local solutions to quasilinear parabolic equations without growth restrictions. Z. Anal. Anwendungen 15 (1996), 375–396. DOI 10.4171/ZAA/706 | MR 1394434 | Zbl 0851.35051
[11] A. Kufner, O. John, S. Fučík: Function Spaces. Academia, Prague, 1977. MR 0482102
[12] J.  Nečas: Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967. MR 0227584
[13] K. Rektorys: The Method of Discretization in Time and Partial Differential Equations. Reidel Publishing Company, Dordrecht-Boston-London, 1982. MR 0689712 | Zbl 0522.65059
Partner of
EuDML logo