[1] D. Gilbarg, N. S. Trudinger:
Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin-Heidelberg-Tokyo, 1983.
MR 0737190
[3] Ch. Grossman, M. Krätzschmar, H.-G. Roos:
Gleichmäßig einschließende Diskretisierungsverfahren für schwach nichtlineare Randwertaufgaben. Numer. Math. 49 (1986), 95–110.
DOI 10.1007/BF01389432 |
MR 0847020
[4] J. Kačur:
On $L_{\infty }$-convergence of Rothe’s method. Comment. Math. Univ. Carolin. 30 (1989), 505–510.
MR 1031868
[5] J. Kačur:
Application of Rothe’s method to evolution integro-differential equations. J. Reine Angew. Math. 388 (1988), 73–105.
MR 0944184
[6] N. Kikuchi: Hölder estimates of solutions to difference-differential equations of elliptic-parabolic type. J. Geom. Anal. 10 (2000), 525–538.
[7] N. Kikuchi:
On a method of constructing Morse flows to variational functionals. Nonlinear World 1 (1994), 131–147.
MR 1297075
[8] G. Koeffe, H.-G. Roos, L. Tobiska:
An enclosure generating modification of the method of discretization in time. Comment. Math. Univ. Carolin. 28 (1982), 441–447.
MR 0912574
[9] V. Pluschke:
$L_{\infty }$-estimates and uniform convergence of Rothe’s method for quasilinear parabolic differential equations. Methoden Verfahren Math. Phys. Vol 37, K. Kleinman et al. (eds.), Peter Lang-Verlag, 1991, pp. 187–199.
MR 1215747
[11] A. Kufner, O. John, S. Fučík:
Function Spaces. Academia, Prague, 1977.
MR 0482102
[12] J. Nečas:
Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967.
MR 0227584
[13] K. Rektorys:
The Method of Discretization in Time and Partial Differential Equations. Reidel Publishing Company, Dordrecht-Boston-London, 1982.
MR 0689712 |
Zbl 0522.65059