[1] E. L. Allgower. K. Georg:
Numerical Continuation Methods. Springer Verlag, New York, 1990.
MR 1059455 |
Zbl 0717.65030
[2] J. Bošek, V. Janovský: A note on the recursive projection method. Proceedings of GAMM96. Z. Angew. Math. Mech. (1977), 437-440.
[3] B. D. Davidson:
Large-scale continuation and numerical bifurcation for partial differential equations. SIAM J. Numer. Anal. 34 (1997), 2001–2027.
MR 1472207 |
Zbl 0894.65023
[4] T. J. Garratt, G. Moore and A. Spence:
A generalised Cayley transform for the numerical detection of Hopf bifurcation points in large systems. Contributions in numerical mathematics, World Sci. Ser. Appl. Anal. (1993), 177–195.
MR 1299759
[5] G. H. Golub, Ch. F. van Loan:
Matrix Computations. The Johns Hopkins University Press, Baltimore, 1996.
MR 1417720
[6] V. Janovský, O. Liberda: Recursive Projection Method for detecting bifurcation points. Proceedings SANM’99, Union of Czech Mathematicians and Physicists, 1999, pp. 121–124.
[7] V. Janovský, O. Liberda: Projected version of the Recursive Projection Method algorithm. Proceedings of 3rd Scientific Colloquium, Institute of Chemical Technology, Prague, 2001, pp. 89–100.
[8] M. Kubíček, M. Marek:
Computational Methods in Bifurcation Theory and Dissipative Structures. Springer, 1983.
MR 0719370
[10] K. Lust, D. Roose:
Computation and bifurcation analysis of periodic solutions of large–scale systems. IMA Preprint Series #1536, Feb. 1998, IMA, University of Minnesota.
MR 1768366
[11] G. M. Shroff, H. B. Keller:
Stabilization of unstable procedures: the Recursive Projection Method. SIAM J. Numer. Anal. 30 (1993), 1099–1120.
DOI 10.1137/0730057 |
MR 1231329