Previous |  Up |  Next

Article

Keywords:
nonlinear regression model with constraints; linearization; quadratization
Summary:
In nonlinear regression models with constraints a linearization of the model leads to a bias in estimators of parameters of the mean value of the observation vector. Some criteria how to recognize whether a linearization is possible is developed. In the case that they are not satisfied, it is necessary to decide whether some quadratic corrections can make the estimator better. The aim of the paper is to contribute to the solution of the problem.
References:
[1] D. M.  Bates, D.  G. Watts: Relative curvature measures of nonlinearity. J.  Roy. Statist. Soc. Ser.  B 42 (1980), 1–25. MR 0567196
[2] A.  Jenčová: A comparison of linearization and quadratization domains. Appl. Math. 42 (1997), 279–291. DOI 10.1023/A:1023064412279 | MR 1453933
[3] L. Kubáček: On a linearization of regression models. Appl. Math. 40 (1995), 61–78. MR 1305650
[4] L.  Kubáček, L. Kubáčková, J. Volaufová: Statistical Models with Linear Structures. Veda, Bratislava, 1995.
[5] L.  Kubáček: Models with a low nonlinearity. Tatra Mountains Math. Publ. 7 (1996), 149–155. MR 1408464
[6] L.  Kubáček: Quadratic regression models. Math. Slovaca 46 (1996), 111–126. MR 1414414
[7] L.  Kubáček: Corrections of estimators in linearized models. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 37 (1998), 69–80. MR 1690475
[8] L.  Kubáček, L. Kubáčková: Regression Models with a Weak Nonlinearity. Technical Reports. University of Stuttgart, 1998, pp. 1–64.
[9] L.  Kubáček: Linear versus quadratic estimators in linearized models. Submitted to Appl. Math. MR 2043075
[10] A.  Pázman: Nonlinear Statistical Models. Kluwer Academic Publishers, Dordrecht-Boston-London and Ister Science Press, Bratislava, 1993. MR 1254661
[11] C. R. Rao, S. K.  Mitra: Generalized Inverse of the Matrix and Its Applications. J.  Wiley, New York, 1971. MR 0338013
[12] E.  Tesaříková, L. Kubáček: How to deal with regression models with a weak nonlinearity. Discuss. Math. Probab. Stat. 21 (2001), 21–48. DOI 10.7151/dmps.1018 | MR 1868926
Partner of
EuDML logo