Previous |  Up |  Next

Article

Keywords:
PDE’s of evolution; method of Rothe; porous media; moisture and heat transfer
Summary:
Most non-trivial existence and convergence results for systems of partial differential equations of evolution exclude or avoid the case of a non-symmetrical parabolic part. Therefore such systems, generated by the physical analysis of the processes of transfer of heat and moisture in porous media, cannot be analyzed easily using the standard results on the convergence of Rothe sequences (e.g. those of W. Jäger and J. Kačur). In this paper the general variational formulation of the corresponding system is presented and its existence and convergence properties are verified; its application to one model problem (preserving the symmetry in the elliptic, but not in the parabolic part) is demonstrated.
References:
[1] J. Appell, P. P. Zabrejko: Nonlinear Superposition Operators. Cambridge University Press, 1980. MR 1066204
[2] J. Dalík, J. Daněček and S. Šťastník: The Kiessl model, existence of classical solution. In: Proceedings of the conference “Matematická štatistika, numerická matematika a ich aplikácie”, Kočovce (Slovak Republic),  (eds.), 1999, pp. 62–75. (Slovak)
[3] J. Dalík, J. Daněček and J.  Vala: Numerical solution of the Kiessl model. Appl. Math. 45 (2000), 3–17. DOI 10.1023/A:1022232632054 | MR 1738893
[4] J. Dalík, J. Svoboda and S. Šťastník: A model of moisture and temperature propagation. Preprint, Technical University (Faculty of Civil Engineering) in Brno, 2000.
[5] J. Franců: Monotone operators—a survey directed to differential equations. Appl. Math. 35 (1991), 257–300. MR 1065003
[6] J. Franců: Weakly continuous operators—applications to differential equations. Appl. Math. 39 (1994), 45–56. MR 1254746
[7] S. Fučík, A. Kufner: Nonlinear Differential Equations. Elsevier, Amsterdam, 1980. MR 0558764
[8] H. Gajewski, K. Gröger and K. Zacharias: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie Verlag, Berlin, 1974. MR 0636412
[9] H. Glaser: Wärmeleitung und Feuchtigkeitdurchgang durch Kühlraumisolierungen. Kältetechnik H.3 (1958), 86–91.
[10] W. Jäger, J. Kačur: Solution of porous medium type systems by linear approximation schemes. Numer. Math. 60 (1991), 407–427. DOI 10.1007/BF01385729 | MR 1137200
[11] W.  Jäger, J. Kačur: Approximation of porous medium type systems by nondegenerate elliptic systems. Stochastische mathematische Modelle, Preprint 123, University of Heidelberg, 1990.
[12] J. Kačur: Method of Rothe in Evolution Equations. Teubner-Verlag, Leipzig, 1985. MR 0834176
[13] J. Kačur: Solution of some free boundary problems by relaxation schemes. Preprint M3-94, Comenius University (Faculty of Mathematics and Physics) in Bratislava, 1994. MR 1664813
[14] J.  Kačur: Solution to strongly nonlinear parabolic problem by a linear approximation scheme. Preprint M2-96, Comenius University (Faculty of Mathematics and Physics) in Bratislava, 1996. MR 1670689
[15] J. Kačur, A. Handlovičová and M. Kačurová: Solution of nonlinear diffusion problems by linear approximation schemes. SIAM J. Numer. Anal. 30 (1993), 1703–1722. DOI 10.1137/0730087 | MR 1249039
[16] K.  Kiessl: Kapillarer und dampfförmiger Feuchtetransport in mehrschichtlichen Bauteilen. Dissertation, University of Essen, 1983.
[17] O. Kritscher: Die wissenschaftlichen Grundlagen der Trockungstechnik. Springer-Verlag, Berlin, 1978.
[18] M. Krus: Feuchtetransport- und Speicherkoeffizienten poröser mineralischer Baustoffen: theoretische Grundlagen und neue Messtechniken. Dissertation, University of Stuttgart, 1995.
[19] A. Kufner, O. John and S. Fučík: Function Spaces. Academia, Prague, 1977. MR 0482102
[20] H. M. Künzel: Rechnerische Untersuchungen des Langzeit-Feuchteverhaltens von Wärmedämmschichten in Umkehrdächern mit Begründung. Research report IBP FtB-23, 1993.
[21] MathWorks MATLAB—The Language of Technical Computing, Application Program Interface Guide, Version 5. The MathWorks, Inc., 1998.
[22] V. G. Maz’ya: Spaces of S. L. Sobolev. Leningrad (St. Petersburg) University Press, 1985. (Russian) MR 0807364
[23] J. Nečas: Introduction to the Theory of Nonlinear Elliptic Equations. Teubner-Verlag, Leipzig, 1983. MR 0731261
[24] M. Pavluš, E. Pavlušová: On the mathematical modelling of the process of the heat and moisture transfer in the porous materials. Research report E11-99-8, Institute of Nuclear Research Dubna (Russia), 1999.
[25] T. Roubíček: Relaxation in Optimization Theory and Variational Calculus. Walter de Gruyter, Berlin, 1997. MR 1458067
[26] J. Vala: A comment to the Jäger-Kačur linearization scheme for strongly nonlinear parabolic equations. Appl. Math. 44 (1999), 481–496. DOI 10.1023/A:1022229022563 | MR 1727984
[27] J. Vala: On one mathematical model of creep in superalloys. Appl. Math. 43 (1998), 351–380. DOI 10.1023/A:1022286318503 | MR 1644132 | Zbl 1042.74511
Partner of
EuDML logo