[1] G. Ciardo, A. Blakmore, P. F. Chimento, JR., J. K. Muppala and K. S. Trivedi:
Automated generation and analysis of Markov reward models using stochastic reward nets. In: Linear Algebra, Markov Chain, and Queueing Models, C. D. Meyer, R. J. Plemmons (eds.), Springer-Verlag, New York, 1993, pp. 145–191.
MR 1242135
[2] R. David, H. Alla: Petri Nets and Grafcet: Tools for Modelling Discrete Event Systems. Prentice Hall International, 1992.
[3] B. W. Johnson: Design and Analysis of Fault-Tolerant Digital Systems. Addison-Wesley Publishing Company, Massachusetts, 1989.
[4] Š. Klapka, P. Mayer: Some aspects of modelling railway safety. In: Proceedings of the XIIIth SANM, Nečtiny, (eds.), Západočeská univerzita, Plzeň, 1999, pp. 135–140.
[5] K. Kule: Reliability and safety of interlocking systems. NADAS, Praha, 1980. (Czech)
[7] I. Marek, P. Mayer:
Iterative aggregation/disaggregation methods for computing stationary probability vectors of stochastic matrices can be finitely terminating. J. Differential Equations 3 (2001), 301–313.
MR 1848180
[8] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli and G. Franceschinis: Modelling with Generalized Stochastic Petri Nets. John Wiley & Sons, Chichester, 1995.
[9] B. Plateau, K. Atif:
Stochastic automata network for modelling parallel systems. IEEE transaction on software engineering 17 (1991), 1093–1108.
DOI 10.1109/32.99196 |
MR 1133053
[10] K. Rástočný: Models for analysis of safety computer interlocking systems. Habilitation thesis, University of Žilina, 1998. (Slovak)
[11] W. J. Stewart:
Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princenton, 1994.
MR 1312831 |
Zbl 0821.65099
[12] J. Walter: Stochastic Models in Economy. SNTL, Praha, 1970. (Czech)