Previous |  Up |  Next

Article

Keywords:
eigensystem of a correlation matrix; hyperbolic transformations; hyperbolic Householder transformation; hyperbolic Givens transformation; hyperbolic singular value decomposition
Summary:
An algorithm for hyperbolic singular value decomposition of a given complex matrix based on hyperbolic Householder and Givens transformation matrices is described in detail. The main application of this algorithm is the decomposition of an updated correlation matrix.
References:
[1] A. W.  Bojanczyk, R.  Onn and A. O.  Steinhardt: Existence of the hyperbolic singular value decomposition. Linear Algebra Appl. 185 (1993), 21–30. MR 1213168
[2] J. M. Chambers: Regression updating. J. Amer. Statist. Assoc. 66 (1971), 744–748. DOI 10.1080/01621459.1971.10482338
[3] G. H. Golub, C. F. Van Loan: Matrix Computations. The Johns Hopkins University Press, Baltimore and London, 1996, 3rd edition. MR 1417720
[4] S. Haykin: Adaptive Filter Theory. Prentice-Hall, Englewood Cliffs, 1996.
[5] D. Janovská, G.  Opfer: A note on hyperbolic transformations. Numer. Linear Algebra Appl. 8 (2001), 127–146. DOI 10.1002/1099-1506(200103)8:2<127::AID-NLA227>3.0.CO;2-# | MR 1812029
[6] D. Janovská: Algorithms of hyperbolic transformations. In: Proceedings of PANM 10, Lázně Libverda 2000, Math. Inst. Acad. Sci., Prague, 2000, pp. 54–66. (Czech)
[7] B. C.  Levy: A note on the hyperbolic singular value decomposition. Linear Algebra Appl. 277 (1998), 135–142. MR 1624524 | Zbl 0933.15016
[8] R. Onn, A. O.  Steinhardt and A. W. Bojanczyk: The hyperbolic singular value decomposition and applications. IEEE Trans. Signal Processing 39 (1991), 1575–1588. DOI 10.1109/78.134396
[9] J. H. Wilkinson, C. Reinsch: Handbook for Automatic Computation, Linear Algebra. Springer, New York, 1971. MR 0461856
Partner of
EuDML logo