[1] R. Bialecki, A. J. Nowak:
Boundary value problems in heat conduction with nonlinear material and nonlinear boundary conditions. Appl. Math. Modelling 5 (1981), 417–421.
DOI 10.1016/S0307-904X(81)80024-8
[2] S. S. Chow:
Finite element error estimates for nonlinear elliptic equations of monotone type. Numer. Math. 54 (1988), 373–393.
MR 0972416 |
Zbl 0643.65058
[3] P. G. Ciarlet:
The Finite Element Method for Elliptic Problems. North Holland, Amsterdam, 1978.
MR 0520174 |
Zbl 0383.65058
[4] P. G. Ciarlet, P. A. Raviart:
The combined effect of curved boundaries and numerical integration in isoparametric finite element method. In: The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations, A. K. Aziz (ed.), Academic Press, New York, 1972, pp. 409–474.
MR 0421108
[6] M. Feistauer, H. Kalis and M. Rokyta:
Mathematical modelling of an electrolysis process. Comment. Math. Univ. Carolin. 30 (1989), 465–477.
MR 1031864
[7] M. Feistauer, M. Křížek and V. Sobotíková:
An analysis of finite element variational crimes for a nonlinear elliptic problem of a nonmonotone type. East-West J. Numer. Math. 1 (1993), 267–285.
MR 1318806
[8] M. Feistauer, K. Najzar:
Finite element approximation of a problem with a nonlinear Newton boundary condition. Numer. Math. 78 (1998), 403–425.
DOI 10.1007/s002110050318 |
MR 1603350
[9] M. Feistauer, K. Najzar and V. Sobotíková:
Error estimates for the finite element solution of elliptic problems with nonlinear Newton boundary conditions. Numer. Funct. Anal. Optim. 20 (1999), 835–851.
DOI 10.1080/01630569908816927 |
MR 1728186
[10] M. Feistauer, K. Najzar, V. Sobotíková and P. Sváček: Numerical analysis of problems with nonlinear Newton boundary conditions. In: Numerical Mathematics and Advanced Applications, Proc. of the Conf. ENUMATH99, P. Neittaanmäki, T. Tiihonen and P. Tarvainen (eds.), World Scientific, Singapore, 2000, pp. 486–493.
[11] M. Feistauer, V. Sobotíková:
Finite element approximation of nonlinear elliptic problems with discontinuous coefficients. RAIRO Modél. Math. Anal. Numér. 24 (1990), 457–500.
DOI 10.1051/m2an/1990240404571 |
MR 1070966
[13] M. Feistauer, A. Ženíšek:
Compactness method in the finite element theory of nonlinear elliptic problems. Numer. Math. 52 (1988), 147–163.
DOI 10.1007/BF01398687 |
MR 0923708
[14] J. Franců:
Monotone operators. A survey directed to applications to differential equations. Appl. Math. 35 (1990), 257–301.
MR 1065003
[15] M. Ganesh, I. G. Graham and J. Sivaloganathan:
A pseudospectral three-dimensional boundary integral method applied to a nonlinear model problem from finite elasticity. SIAM J. Numer. Anal. 31 (1994), 1378–1414.
DOI 10.1137/0731072 |
MR 1293521
[16] M. Ganesh, O. Steinbach: Boundary element methods for potential problems with nonlinear boundary conditions. Applied Mathematics Report AMR98/17, School of Mathematics, The University of New South Wales, Sydney (1998).
[17] M. Ganesh, O. Steinbach:
Nonlinear boundary integral equations for harmonic problems. Applied Mathematics Report AMR98/20, School of Mathematics, The University of New South Wales, Sydney (1998).
MR 1738277
[19] M. Křížek, L. Liu and P. Neittaanmäki:
Finite element analysis of a nonlinear elliptic problem with a pure radiation condition. In: Applied Nonlinear Analysis, Kluwer, Amsterdam, 1999, pp. 271–280.
MR 1727454
[20] A. Kufner, O. John and S. Fučík:
Function Spaces. Academia, Praha, 1977.
MR 0482102
[21] L. Liu, M. Křížek: Finite element analysis of a radiation heat transfer problem. J. Comput. Math. 16 (1998), 327–336.
[22] R. Moreau, J. W. Ewans: An analysis of the hydrodynamics of aluminium reduction cells. J. Electrochem. Soc. 31 (1984), 2251–2259.
[23] J. Nečas:
Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967.
MR 0227584
[24] V. Sobotíková:
Finite elements on curved domains. East-West J. Numer. Math. 4 (1996), 137–149.
MR 1403648
[25] G. Strang:
Variational crimes in the finite element method. In: The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations, A. K. Aziz (ed.), Academic Press, New York, 1972, pp. 689–710.
MR 0413554 |
Zbl 0264.65068
[26] P. Sváček: Higher order finite element method for a problem with nonlinear boundary condition. In: Proc. of the 13th Summer School “Software and Algorithms of Numerical Mathematics”, University of West Bohemia in Pilsen, 1999, pp. 301–308.
[27] A. Ženíšek:
Nonhomogeneous boundary conditions and curved triangular finite elements. Appl. Math. 26 (1981), 121–141.
MR 0612669
[28] A. Ženíšek:
The finite element method for nonlinear elliptic equations with discontinuous coefficients. Numer. Math. 58 (1990), 51–77.
DOI 10.1007/BF01385610 |
MR 1069653
[29] A. Ženíšek:
Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations. Academic Press, London, 1990.
MR 1086876