[2] R. H. Bielschowsky, A. Friedlander, F. A. M. Gomes, J. M. Martínez and M. Raydan: An adaptive algorithm for bound constrained quadratic minimization. Investigación Oper. 7 (1997), 67–102.
[3] I. Bongartz, A. R. Conn, N. I. M. Gould and Ph. L. Toint:
CUTE: Constrained and Unconstrained Testing Environment. ACM Trans. Math. Software 21 (1995), 123–160.
DOI 10.1145/200979.201043
[4] P. Ciarlet:
The Finite Element Method for Elliptic Problems. North Holland, Amsterdam, 1978.
MR 0520174 |
Zbl 0383.65058
[5] T. F. Coleman, L. A. Hulbert:
A direct active set algorithm for large sparse quadratic programs with simple bounds. Math. Programming 45 (1989), 373–406.
DOI 10.1007/BF01589112 |
MR 1038241
[6] A. R. Conn, N. I. M. Gould and Ph. L. Toint:
Global convergence of a class of trust region algorithms for optimization with simple bounds. SIAM J. Numer. Anal. 25 (1988), 433-460.
DOI 10.1137/0725029 |
MR 0933734
[7] A. R. Conn, N. I. M. Gould and Ph. L. Toint:
A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds. SIAM J. Numer. Anal. 28 (1988), 545–572.
MR 1087519
[8] R. Dembo, U. Tulowitzki: On the minimization of quadratic functions subject to box constraints. Working Paper B-71, School of Organization and Management, Yale University, New Haven (1983).
[9] J. E. Dennis, L. N. Vicente:
Trust-region interior-point algorithms for minimization problems with simple bounds. In: Applied Mathematics and Parallel Computing (Festschrift for Klaus Ritter) (H. Fischer, B. Riedmüller and S. Schäffer, eds.), Physica-Verlag, Springer-Verlag, 1996, pp. 97–107.
MR 1469263
[10] M. A. Diniz-Ehrhardt, M. A. Gomes-Ruggiero and S. A. Santos: Comparing the numerical performance of two trust-region algorithms for large-scale bound-constrained minimization. Investigación Oper. 7 (1997), 23–54.
[11] M. A. Diniz-Ehrhardt, M. A. Gomes-Ruggiero and S. A. Santos: Numerical analysis of leaving-face parameters in bound-constrained quadratic minimization. Relatório de Pesquisa RP52/98, IMECC, UNICAMP, Campinas, Brazil, 1998.
[13] Z. Dostál, A. Friedlander and S. A. Santos:
Solution of contact problems of elasticity by FETI domain decomposition. Contemp. Math. 218 (1998), 82–93.
DOI 10.1090/conm/218/03003 |
MR 1645845
[14] Z. Dostál, F. A. M. Gomes Neto and S. A. Santos:
Solution of contact problems by FETI domain decomposition with natural coarse space projection. Comput. Methods Appl. Mech. Engrg. 190 (2000), 1611–1627.
DOI 10.1016/S0045-7825(00)00180-8
[15] Z. Dostál, V. Vondrák:
Duality based solution of contact problems with Coulomb friction. Arch. Mech. 49 (1997), 453–460.
MR 1468556
[16] L. Fernandes, A. Fischer, J. J. Júdice, C. Requejo and C. Soares:
A block active set algorithm for large-scale quadratic programming with box constraints. Ann. Oper. Res. 81 (1998), 75–95.
DOI 10.1023/A:1018990014974 |
MR 1638391
[18] A. Friedlander, J. M. Martínez:
On the maximization of a concave quadratic function with box constraints. SIAM J. Optim. 4 (1994), 177–192.
DOI 10.1137/0804010 |
MR 1260414
[19] A. Friedlander, J. M. Martínez and M. Raydan:
A new method for large-scale box constrained quadratic minimization problems. Optimization Methods and Software 5 (1995), 57–74.
DOI 10.1080/10556789508805602
[20] A. Friedlander, J. M. Martínez and S. A. Santos:
A new trust region algorithm for bound constrained minimization. Appl. Math. Optim. 30 (1994), 235–266.
DOI 10.1007/BF01183013 |
MR 1288591
[21] P. E. Gill, W. Murray and M. H. Wright:
Practical Optimization. Academic Press, London and New York, 1981.
MR 0634376
[22] G. H. Golub, Ch. F. Van Loan:
Matrix Computations. The Johns Hopkins University Press, Baltimore and London, 1989.
MR 1002570
[23] M. R. Hestenes, E. Stiefel:
Methods of conjugate gradients for solving linear systems. J. Res. NBS B 49 (1952), 409–436.
MR 0060307
[24] J. J. Júdice, F. M. Pires: Direct methods for convex quadratic programming subject to box constraints. Investigação Operacional 9 (1989), 23–56.
[25] Y. Lin, C. W. Cryer:
An alternating direction implicit algorithm for the solution of linear complementarity problems arising from free boundary problems. Appl. Math. Optim. 13 (1985), 1–17.
DOI 10.1007/BF01442196 |
MR 0778418
[26] P. Lötstedt:
Numerical simulation of time-dependent contact and friction problems in rigid body mechanics. SIAM J. Sci. Comput. 5 (1984), 370–393.
DOI 10.1137/0905028 |
MR 0740855
[27] P. Lötstedt:
Solving the minimal least squares problem subject to bounds on the variables. BIT 24 (1984), 206–224.
MR 0753549
[28] J. J. Moré, G. Toraldo:
On the solution of large quadratic programming problems with bound constraints. SIAM J. Optim. 1 (1991), 93–113.
DOI 10.1137/0801008 |
MR 1094793
[31] E. K. Yang, J. W. Tolle: A class of methods for solving large, convex quadratic programs subject to box constraints. Tech. Rep. UNC/ORSA/TR-86-3, Dept. of Oper. Research and Systems Analysis, Univ. of North Carolina, Chapel Hill, NC. (1986).