Previous |  Up |  Next

Article

Keywords:
radiation boundary condition; generalized solution; existence
Summary:
For a second order elliptic equation with a nonlinear radiation-type boundary condition on the surface of a three-dimensional domain, we prove existence of generalized solutions without explicit conditions (like $u\big |_\Gamma \in L_5(\Gamma )$) on the trace of solutions. In the boundary condition, we admit polynomial growth of any fixed degree in the unknown solution, and the heat exchange and emissivity coefficients may vary along the radiating surface. Our generalized solution is contained in a Sobolev space with an exponent $q$ which is greater than $9/4$ for the fourth power law.
References:
[1] R. A.  Adams: Sobolev Spaces. Academic Press, New York, 1975. MR 0450957 | Zbl 0314.46030
[2] S. C.  Brenner, L. R.  Scott: The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York, 1994. MR 1278258
[3] P. G. Ciarlet: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978. MR 0520174 | Zbl 0383.65058
[4] D. S. Cohen: Generalized radiation cooling of a convex solid. J.  Math. Anal. Appl. 35 (1971), 503–511. DOI 10.1016/0022-247X(71)90198-3 | MR 0284092 | Zbl 0218.35036
[5] M. C. Delfour, G. Payre and J.-P.  Zolésio: Approximation of nonlinear problems associated with radiating bodies in space. SIAM J. Numer. Anal. 24 (1987), 1077–1094. DOI 10.1137/0724071 | MR 0909066
[6] A.  Friedman: Generalized heat transfer between solids and bases under nonlinear boundary conditions. J.  Math. Mech. 8 (1959), 161–183. MR 0102345
[7] L.  Gergó, G. Stoyan: On a mathematical model of a radiating, viscous, heat-conducting fluid: Remarks on a paper by J. Förste. Z.  Angew.  Math.  Mech. 77 (1997), 367–375. DOI 10.1002/zamm.19970770510 | MR 1455357
[8] P. Grisvard: Elliptic Problems in Nonsmooth Domains. Pitman, Boston-London-Melbourne, 1985. MR 0775683 | Zbl 0695.35060
[9] S. S. Kutateladze: Basic Principles of the Theory of Heat Exchange, 4th ed. Nauka, Novosibirsk, 1970. (Russian)
[10] J. L. Lions, E. Magenes: Problèmes aux limites non homogènes et applications, Vol. 1,  2. Dunod, Paris, 1968. MR 0247243
[11] L. Liu, M.  Křížek: Finite element analysis of a radiation heat transfer problem. J.  Comput. Math. 16 (1998), 327–336.
[12] Z. Milka: Finite element solution of a stationary heat conduction equation with the radiation boundary condition. Appl. Math. 38 (1993), 67–79. MR 1202081 | Zbl 0782.65130
[13] L. Simon: On approximation of the solutions of quasilinear elliptic equations in $\mathbb{R}^n$. Acta Sci. Math. (Szeged) 47 (1984), 239–247. MR 0755579
[14] L. Simon: Radiation conditions and the principle of limiting absorption for quasilinear elliptic equations. Dokl. Akad. Nauk 288 (1986), 316–319. (Russian) MR 0843446 | Zbl 0629.35042
[15] B.  Szabó, I.  Babuška: Finite Element Analysis. Wiley, New York, 1991. MR 1164869
Partner of
EuDML logo