[2] S. C. Brenner, L. R. Scott:
The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York, 1994.
MR 1278258
[3] P. G. Ciarlet:
The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.
MR 0520174 |
Zbl 0383.65058
[5] M. C. Delfour, G. Payre and J.-P. Zolésio:
Approximation of nonlinear problems associated with radiating bodies in space. SIAM J. Numer. Anal. 24 (1987), 1077–1094.
DOI 10.1137/0724071 |
MR 0909066
[6] A. Friedman:
Generalized heat transfer between solids and bases under nonlinear boundary conditions. J. Math. Mech. 8 (1959), 161–183.
MR 0102345
[7] L. Gergó, G. Stoyan:
On a mathematical model of a radiating, viscous, heat-conducting fluid: Remarks on a paper by J. Förste. Z. Angew. Math. Mech. 77 (1997), 367–375.
DOI 10.1002/zamm.19970770510 |
MR 1455357
[8] P. Grisvard:
Elliptic Problems in Nonsmooth Domains. Pitman, Boston-London-Melbourne, 1985.
MR 0775683 |
Zbl 0695.35060
[9] S. S. Kutateladze: Basic Principles of the Theory of Heat Exchange, 4th ed. Nauka, Novosibirsk, 1970. (Russian)
[10] J. L. Lions, E. Magenes:
Problèmes aux limites non homogènes et applications, Vol. 1, 2. Dunod, Paris, 1968.
MR 0247243
[11] L. Liu, M. Křížek: Finite element analysis of a radiation heat transfer problem. J. Comput. Math. 16 (1998), 327–336.
[12] Z. Milka:
Finite element solution of a stationary heat conduction equation with the radiation boundary condition. Appl. Math. 38 (1993), 67–79.
MR 1202081 |
Zbl 0782.65130
[13] L. Simon:
On approximation of the solutions of quasilinear elliptic equations in $\mathbb{R}^n$. Acta Sci. Math. (Szeged) 47 (1984), 239–247.
MR 0755579
[14] L. Simon:
Radiation conditions and the principle of limiting absorption for quasilinear elliptic equations. Dokl. Akad. Nauk 288 (1986), 316–319. (Russian)
MR 0843446 |
Zbl 0629.35042
[15] B. Szabó, I. Babuška:
Finite Element Analysis. Wiley, New York, 1991.
MR 1164869