Previous |  Up |  Next

Article

Keywords:
discrete Laplace operator; discrete boundary value problem; eigenvalues; eigenfunctions
Summary:
A discretized boundary value problem for the Laplace equation with the Dirichlet and Neumann boundary conditions on an equilateral triangle with a triangular mesh is transformed into a problem of the same type on a rectangle. Explicit formulae for all eigenvalues and all eigenfunctions are given.
References:
[1] M. Práger: Eigenvalues and eigenfunctions of the Laplace operator on an equilateral triangle. Appl. Math. 43 (1998), 311–320. DOI 10.1023/A:1023269922178 | MR 1627985
Partner of
EuDML logo