[1] P.-A. Bliman:
Etude Mathématique d’un Modèle de Frottement sec: Le Modèle de P. R. Dahl. Thesis. Université de Paris IX (Paris-Dauphine), Paris and INRIA, Rocquencourt, 1990.
MR 1289413
[3] M. Brokate:
Optimale Steuerung von gewöhnlichen Differentialgleichungen mit Nichtlinearitäten vom Hysterese-Typ. Peter Lang, Frankfurt am Main, 1987. (German)
MR 1031251
[4] M. Brokate, K. Dreßler and P. Krejčí:
Rainflow counting and energy dissipation for hysteresis models in elastoplasticity. Euro. J. Mech. A/Solids 15 (1996), 705–735.
MR 1412202
[5] M. Brokate, A. V. Pokrovskiĭ:
Asymptotically stable oscillations in systems with hysteresis nonlinearities. J. Differential Equations 150 (1998), 98–123.
DOI 10.1006/jdeq.1998.3492 |
MR 1660262
[7] M. Brokate, A. Visintin:
Properties of the Preisach model for hysteresis. J. Reine Angew. Math. 402 (1989), 1–40.
MR 1022792
[9] M. A. Krasnosel’skiĭ, I. D. Mayergoyz, A. V. Pokrovskiĭ and D. I. Rachinskiĭ:
Operators of hysteresis nonlinearity generated by continuous relay systems. Avtomat. i Telemekh. (1994), 49–60. (Russian)
MR 1295891
[10] M. A. Krasnosel’skiĭ, A. V. Pokrovskiĭ:
Systems with Hysteresis. English edition Springer 1989, Nauka, Moscow, 1983. (Russian)
MR 0742931
[11] P. Krejčí:
On Maxwell equations with the Preisach hysteresis operator: the one-dimensional time-periodic case. Apl. Mat. 34 (1989), 364–374.
MR 1014077
[12] P. Krejčí: Global behaviour of solutions to the wave equation with hysteresis. Adv. Math. Sci. Appl. 2 (1993), 1–23.
[14] P. Krejčí:
Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakuto Int. Ser. Math. Sci. Appl., Vol 8. Gakkōtosho, Tokyo, 1996.
MR 2466538
[15] I. D. Mayergoyz:
Mathematical Models for Hysteresis. Springer-Verlag, New York, 1991.
MR 1083150
[16] F. Preisach: Über die magnetische Nachwirkung. Z. Phys. 94 (1935), 277–302. (German)