Previous |  Up |  Next

Article

Keywords:
$n$-body problem; ordinary differential equations; Painlevé’s theorem
Summary:
In this article we show some aspects of analytical and numerical solution of the $n$-body problem, which arises from the classical Newtonian model for gravitation attraction. We prove the non-existence of stationary solutions and give an alternative proof for Painlevé’s theorem.
References:
[1] P. Andrle: Foundation of Celestial Mechanics. Academia, Praha, 1971. (Czech)
[2] P. Andrle: Celestial Mechanics. Academia, Praha, 1987. (Czech)
[3] J. Kofroň: Ordinary Differential Equations in Real Space. Univerzita Karlova, Praha, 1990. (Czech)
[4] M. Křížek: On the three-body problem. Rozhledy mat.-fyz. 70 (1992), 105–112. (Czech)
[5] M. Křížek: Numerical experience with the three-body problem. Comput. Appl. Math. 63 (1995), 403–409. DOI 10.1016/0377-0427(95)00067-4 | MR 1365579
[6] M. Křížek: Numerical experience with the finite speed of gravitational influence. Math. Comput. Simulation 50 (1999), 237–245. DOI 10.1016/S0378-4754(99)00085-3 | MR 1717610
[7] J. Kurzweil: Ordinary Differential Equations. Elsevier, Amsterdam, 1986. MR 0929466 | Zbl 0667.34002
[8] Ch. Marchal: The Three Body Problem. Elsevier, Amsterdam, 1990. MR 1124619 | Zbl 0719.70006
[9] A. Marciniak: Numerical Solution of the $N$-Body Problem. Reidel Publishing Company, Dordrecht, 1985. MR 0808778
[10] P. Painlevé: Leçons sur la Théorie Analytic des Equations Différentielles. Hermann, Paris, 1897.
[11] D. G. Saari, Z. Xia: Off to infinity in finite time. Notices Amer. Math. Soc. 42 (1995), 538–546. MR 1324734
Partner of
EuDML logo