Previous |  Up |  Next

Article

Keywords:
discontinuous wave equations; topological degree; multi-valued mappings
Summary:
The Leray-Schauder degree is extended to certain multi-valued mappings on separable Hilbert spaces with applications to the existence of weak periodic solutions of discontinuous semilinear wave equations with fixed ends.
References:
[1] J. Berkovits: Some bifurcation results for a class of semilinear equations via topological degree method. Bull. Soc. Math. Belg. 44 (1992), 237–247. MR 1314039 | Zbl 0783.47069
[2] J. Berkovits & V. Mustonen: An extension of Leray-Schauder degree and applications to nonlinear wave equations. Diff. Int. Eqns. 3 (1990), 945–963. MR 1059342
[3] J. Berkovits & V. Mustonen: Topological degree for perturbations of linear maximal monotone mappings and applications to a class of parabolic problems. Rend. Mat. VII-12 (1992), 597–621. MR 1205967
[4] H. Brezis: Periodic solutions of nonlinear vibrating strings and duality principles. Bull. Amer. Math. Soc. 8 (1983), 409–426. DOI 10.1090/S0273-0979-1983-15105-4 | MR 0693957 | Zbl 0537.35055
[5] F. E. Browder: Fixed point theory and nonlinear problems. Bull. Amer. Math. Soc. 9 (1983), 1–39. DOI 10.1090/S0273-0979-1983-15153-4 | MR 0699315 | Zbl 0533.47053
[6] K. C. Chang: Free boundary problems and the set-valued mappings. J. Differential Eqns. 49 (1983), 1–28. DOI 10.1016/0022-0396(83)90018-9 | MR 0704263 | Zbl 0533.35088
[7] K. Deimling: Nonlinear Functional Analysis. Springer-Verlag, Berlin, 1985. MR 0787404 | Zbl 0559.47040
[8] H. Gajewski, K. Gröger & K. Zacharias: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin, 1974. MR 0636412
[9] A. Kittilä: On the topological degree for a class of mappings of monotone type and applications to strongly nonlinear elliptic problems. Ann. Acad. Sci. Fenn. Ser. A I Math. Disser. 91 (1994). MR 1263099
[10] W. Rudin: Real and Complex Analysis. McGraw-Hill, Inc., New York, 1974. MR 0344043 | Zbl 0278.26001
Partner of
EuDML logo