[2] Chen, C. M.: Optimal points of the stresses approximated by triangular linear element in FEM. Natur. Sci. J. Xiangtan Univ. 1 (1978), 77–90.
[3] Chen, C. M.:
Superconvergence of finite element solution and its derivatives. Numer. Math. J. Chinese Univ. 3:2 (1981), 118–125.
MR 0635547
[4] Chen, C. M., Liu, J. G.:
Superconvergence of gradient of triangular linear element in general domain. Natur. Sci. J. Xiangtan Univ. 1 (1987), 114–127.
MR 0899930
[5] Chen, C. M., Zhu Q. D.: A new estimate for the finite element method and optimal point theorem for stresses. Natur. Sci. J. Xiangtan Univ. 1 (1978), 10–20.
[6] Ding, X. X., Jiang, L.S., Lin, Q., Luo, P. Z.:
The finite element method for 4th order non-linear differential equation. Acta Mathematica Sinica 20:2 (1977), 109–118.
MR 0657978
[7] Douglas, J. Jr., Dupond, T.:
Some superconvergence results for Galerkin methods for the approximate solution of two-point boundary value problems. Topics in Numerical Analysis, Academic Press, 1973, pp. 89–92.
MR 0366044
[8] Douglas, J. Jr., Dupont, T., Wheeler, M. F.:
An $L^{\infty }$ estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials. RAIRO Anal. Numér. 8 (1974), 61–66.
MR 0359358
[9] He, W. M.: A derivative extrapolation for second order triangular element. (1997), Master thesis.
[10] Jia, Z. P.: The high accuracy arithmetic for $k$-th order rectangular finite element. (1990), Master thesis.
[11] Křížek, M., Neittaanmäki, P.:
On superconvegence techniques. Acta Appl. Math. 9 (1987), 175–198.
DOI 10.1007/BF00047538
[12] Li, B.:
Superconvergence for higher-order triangular finite elements. Chinese J. Numer. Math. Appl. 12 (1990), 75–79.
MR 1118707
[13] Lin, Q., Lu, T., Shen, S. M.: Maximum norm estimates extrapolation and optimal points of stresses for the finite element methods on the strongly regular triangulation. J. Comput. Math. 1 (1983), 376–383.
[14] Lin, Q., Xu, J. C.:
Linear finite elements with high accuracy. J. Comput. Math. 3. (1985), 115–133.
MR 0854355
[15] Lin, Q., Yan, N. N.: Construction and Analysis for Efficient Finite Element Method. Hebei University Press, 1996. (Chinese)
[16] Lin, Q., Zhu, Q. D.:
Asymptotic expansion for the derivative of finite elements. J. Comput. Math. 2 (1984), 361–363.
MR 0869509
[17] Lin, Q., Zhu, Q. D.: The Preprocessing and Postprocessing for the Finite Element Method. Shanghai Scientific & Technical Publishers, 1994.
[18] Oganesyan, L. A., Rukhovetz, L. A.:
A study of the rate of convergence of variational difference schemes for second order elliptic equations in a two-dimensional region with a smooth boundary. U.S.S.R. Comput. Math. and Math. Phys. 9 (1969), 158–183.
DOI 10.1016/0041-5553(69)90159-1
[19] Schatz, A. H., Sloan, I. H., Wahlbin, L. B.:
Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point. SIAM J. Numer. Anal. 33 (1996), 505–521.
DOI 10.1137/0733027 |
MR 1388486
[20] Schatz, A. H., Wahlbin, L. B.:
Interior maximum norm estimates for finite element methods, Part II. Math. Comp (1995).
MR 0431753
[21] Thomée, V.:
High order local approximation to derivatives in the finite element method. Math. Comp. 31 (1977), 652–660.
DOI 10.2307/2005998 |
MR 0438664
[22] Wahlbin, L. B.:
Superconvergence in Galerkin Finite Element Methods. LN in Math. 1605, Springer, Berlin, 1995.
MR 1439050 |
Zbl 0826.65092
[23] Wahlbin, L. B.:
General principles of superconvergence in Galerkin finite element methods. In Finite element methods: superconvergence, post-processing and a posteriori estimates, M. Křížek, P. Neittaanmäki, R. Stenberg (eds.), Marcel Dekker, New York, 1998, pp. 269–285.
MR 1602738 |
Zbl 0902.65046
[24] Zhu, Q. D.: The derivative optimal point of the stresses for second order finite element method. Natur. Sci. J. Xiangtan Univ. 3 (1981), 36–45.
[25] Zhu, Q. D.:
Natural inner superconvergence for the finite element method. In Proc. of the China-France Symposium on Finite Element Methods (Beijing 1982), Science Press, Gorden and Breach, Beijing, 1983, pp. 935–960.
MR 0754041 |
Zbl 0611.65074
[26] Zhu, Q. D.:
Uniform superconvergence estimates of derivatives for the finite element method. Numer. Math. J. Xiangtan Univ. 5.
MR 0745576 |
Zbl 0549.65073
[27] Zhu, Q. D.:
Uniform superconvergence estimates for the finite element method. Natur. Sci. J. Xiangtan Univ. (19851983), 10–26 311–318.
MR 0890708
[28] Zhu, Q. D., Lin, Q.: The Superconvergence Theory of Finite Element Methods. Hunan Scientific and Technical Publishers, Changsha, 1989. (Chinese)
[29] Zhu, Q. D.: The superconvergence for the 3rd order triangular finite elements. (1997) (to appear).
[30] Zlámal, M.:
Some superconvergence results in the finite element method, LN in Math. 606. (1977, 353–362), Springer, Berlin.
MR 0488863