[1] H.-Z. An:
Non-negative autoregressive models. J. Time Ser. Anal. 13 (1992), 283–295.
Zbl 0767.62070
[2] H.-Z. An, F. Huang:
Estimation for regressive and autoregressive models with non-negative residual errors. J. Time Ser. Anal. 14 (1993), 179–191.
MR 1212017
[3] J. Anděl:
On AR(1) processes with exponential white noise. Commun. Statist. – Theory Methods 17 (1988), 1481–1495.
MR 0945799 |
Zbl 0639.62082
[4] J. Anděl:
Nonlinear nonnegative AR(1) processes. Commun. Statist. – Theory Methods 18 (1989), 4029–4037.
MR 1058926 |
Zbl 0696.62347
[5] J. Anděl: Non-negative autoregressive processes. J. Time Ser. Anal. 10 (1989), 1–11.
[7] J. Anděl, V. Dupač:
An extension of the Borel lemma. Comment. Math. Univ. Carolinae 30 (1989), 403–404.
MR 1014141
[8] B. Auestad, D. Tjøstheim:
Identification of nonlinear time series: First order characterization and order determination. Biometrika 77 (1990), 669–687.
DOI 10.1093/biomet/77.4.669 |
MR 1086681
[11] P. D. Feigin, S. I. Resnick:
Estimation for autoregressive processes with positive innovations. Commun. Statist. – Stochastic Models 8 (1992), 479–498.
MR 1182425
[12] D. A. Jones: Stationarity of non-linear autoregressive processes. Tech. Rep., Institute of Hydrology, Wallingford, Oxon, U.K., 1977.
[13] H. Tong:
Non-linear Time Series. Clarendon Press, Oxford, 1990.
Zbl 0716.62085