[A87b] G. Alefeld:
Rigorous Error Bounds for Singular Values of a Matrix Using the Precise Scalar Product. Computerarithmetic, E. Kaucher, U. Kulisch and Ch. Ullrich (eds.), Teubner, Stuttgart, 1987, pp. 9–30.
MR 0904306
[AH83] G. Alefeld and J. Herzberger:
Introduction to Interval Computations. Academic Press, New York, 1983.
MR 0733988
[AS86] G. Alefeld and H. Spreuer:
Iterative improvement of componentwise error bounds for invariant subspaces belonging to a double or nearly double eigenvalue. Computing 36 (1986), 321–334.
DOI 10.1007/BF02240207 |
MR 0843941
[G89] K. Grüner: Solving the Complex Algebraic Eigenvalue Problem with Verified High Accuracy. Accurate Numerical Algorithms, A Collection of Research Papers, Research Reports ESPRIT, Project 1072, DIAMOND, Vol. 1, Ch. Ullrich and J. Wolff von Gudenberg (eds.), Springer, Berlin, 1989, pp. 59–78.
[K90] S. König:
On the Inflation Parameter Used in Self-Validating Methods. Contributions to Computer Arithmetic and Self-Validating Numerical Methods, Ch. Ullrich (ed.), Baltzer, IMACS, Basel, 1990, pp. 127–132.
MR 1131093
[M94b] G. Mayer:
Result Verification for Eigenvectors and Eigenvalues. Topics in Validated Computations, J. Herzberger (ed.), Elsevier, Amsterdam, 1994, pp. 209–276.
MR 1318956 |
Zbl 0813.65077
[M95a] G. Mayer:
Über ein Prinzip in der Verifikationsnumerik. Z. angew. Math. Mech. 75 (1995), S II, S 545–S 546..
Zbl 0850.65104
[M95c] G. Mayer:
On a unified representation of some interval analytic algorithms. Rostock. Math. Kolloq. 49 (1995), 75–88.
MR 1392204 |
Zbl 0861.65049
[M96] G. Mayer:
Success in Epsilon-Inflation. Scientific Computing and Validated Numerics, G. Alefeld, A. Frommer and B. Lang (eds.), Akademie Verlag, Berlin, 1996, pp. 98–104.
MR 1394227 |
Zbl 0848.65035
[N90] A. Neumaier:
Interval Methods for Systems of Equations. Cambridge University Press, Cambridge, 1990.
MR 1100928 |
Zbl 0715.65030
[R80] S. M. Rump:
Kleine Fehlerschranken bei Matrixproblemen. Thesis, Universität Karlsruhe, 1980.
Zbl 0437.65036
[R83] S. M. Rump:
Solving Algebraic Problems with High Accuracy. A New Approach to Scientific Computation, U. W. Kulisch and W. L. Miranker (eds.), Academic Press, New York, 1983, pp. 53–120.
MR 0751813 |
Zbl 0597.65018
[R86] S. M. Rump:
New Results in Verified Inclusions. Accurate Scientific Computation, Lecture Notes in Computer Science Vol. 235, W. L. Miranker and R. A. Toupin (eds.), Springer, Berlin, 1986, pp. 31–69.
MR 0868284