[1] Besov, O. V., Il’in, V. P., Nikol’skii, S. M.:
Integral representation of functions and embedding theorems. Moscow, Nauka, 1975. (Russian)
MR 0430771
[2] Blowey, J. F., Elliott, C. M.:
Curvature dependent phase boundary motion and double obstacle problems. Degenerate Diffusion, W.M. Ni, L.A. Peletier, and J.L. Vázquez (eds.), IMA Vol. Math. Appl. 47, Springer, New York, 1993, pp. 19–60.
MR 1246337
[3] Blowey, J. F., Elliott, C. M.:
A phase-field model with double obstacle potential. Motion by mean curvature and related topics, G. Buttazzo and A. Visintin (eds.), De Gruyter, Berlin, 1994, pp. 1–22.
MR 1277388
[6] Colli, P., Sprekels, J.:
On a Penrose-Fife model with zero interfacial energy leading to a phase-field system of relaxed Stefan type. Ann. Mat. Pura Appl. (4) 169 (1995), 269–289.
MR 1378478
[7] Colli, P., Sprekels, J.:
Stefan problems and the Penrose-Fife phase-field model. Adv. Math. Sci. Appl. 7 (1997), 911–934.
MR 1476282
[8] Colli, P., Sprekels, J.:
Global solutions to the Penrose-Fife phase-field model with zero interfacial energy and Fourier law. Preprint No. 351. WIAS Berlin, 1997.
MR 1690376
[9] Frémond, M., Visintin, A.:
Dissipation dans le changement de phase. Surfusion. Changement de phase irréversible. C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 301 (1985), 1265–1268.
MR 0880589
[10] Kenmochi, N., Niezgódka, M.:
Systems of nonlinear parabolic equations for phase change problems. Adv. Math. Sci. Appl. 3 (1993/94), 89–117.
MR 1287926
[11] Klein, O.:
A semidiscrete scheme for a Penrose-Fife system and some Stefan problems in $R^3$. Adv. Math. Sci. Appl. 7 (1997), 491–523.
MR 1454679
[12] Klein, O.: Existence and approximation results for phase-field systems of Penrose-Fife type and some Stefan problems. Ph.D. thesis, Humboldt University, Berlin, 1997.
[13] Krasnosel’skii, M. A., Pokrovskii, A. V.:
Systems with hysteresis. Springer-Verlag, Heidelberg, 1989.
MR 0987431
[14] Krejčí, P.:
Hysteresis, convexity and dissipation in hyperbolic equations. Gakuto Int. Series Math. Sci. & Appl., Vol. 8, Gakkōtosho, Tokyo, 1996.
MR 2466538
[15] Krejčí, P., Sprekels, J.: A hysteresis approach to phase-field models. Submitted.
[16] Ladyzhenskaya, O. A., Solonnikov, V. A., Ural’tseva, N. N.: Linear and quasilinear equations of parabolic type. American Mathematical Society, 1968.
[18] Laurençot, Ph.:
Weak solutions to a Penrose-Fife model for phase transitions. Adv. Math. Sci. Appl. 5 (1995), 117–138.
MR 1325962
[19] Mayergoyz, I. D.:
Mathematical models for hysteresis. Springer-Verlag, New York, 1991.
MR 1083150
[21] Protter, M. H., Weinberger, H. F.:
Maximum principle in differential equations. Prentice Hall, Englewood Cliffs, 1967.
MR 0219861
[22] Sprekels, J., Zheng, S.:
Global smooth solutions to a thermodynamically consistent model of phase-field type in higher space dimensions. J. Math. Anal. Appl. 176 (1993), 200–223.
DOI 10.1006/jmaa.1993.1209 |
MR 1222165