Previous |  Up |  Next

Article

Keywords:
Dirichlet problem; integral equations; numerical method
Summary:
The aim of this paper is to give a convergence proof of a numerical method for the Dirichlet problem on doubly connected plane regions using the method of reflection across the exterior boundary curve (which is analytic) combined with integral equations extended over the interior boundary curve (which may be irregular with infinitely many angular points).
References:
[1] Ju. D. Burago, V. G. Maz’ja: Some problems of potential theory and theory of functions for domains with nonregular boundaries. Zapisky Naučnych Seminarov LOMI 3 (1967). (Russian)
[2] M. Dont: Fourier problem with bounded Baire data. Math. Bohemica 122 (1997), 405–441. MR 1489402 | Zbl 0898.31004
[3] E. Dontová: Reflection and the Dirichlet and Neumann problems. Thesis, Prague, 1990. (Czech)
[4] E. Dontová: Reflection and the Dirichlet problem on doubly connected regions. Časopis pro pěst. mat. 113 (1988), 122–147. MR 0949040
[5] E. Dontová: Reflection and the Neumann problem in doubly connected regions. Časopis pro pěst. mat. 113 (1988), 148–168. MR 0949041
[6] Král J.: Some inequalities concerning the cyclic and radial variations of a plane path-curve. Czechoslovak Math. J. 14 (89)  (1964), 271–280. MR 0180689
[7] Král J.: On the logarithmic potential of the double distribution. Czechoslovak Math. J. 14 (89)  (1964), 306–321. MR 0180690
[8] Král J.: Non-tangential limits of the logarithmic potential. Czechoslovak Math. J. 14 (89)  (1964), 455–482. MR 0180691
[9] J. Král: The Fredholm radius of an operator in potential theory. Czechoslovak Math. J. 15 (1965), 454–473, 565–588. MR 0190363
[10] J. Král: Integral Operators in Potential Theory. Lecture Notes in Math. vol. 823, Springer-Verlag 1980. MR 0590244
[11] J. Král: Boundary regularity and normal derivatives of logarithmic potentials. Proc. of the Royal Soc. of Edinburgh 106A (1987), 241–258. MR 0906210
[12] J. Král: The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966), 511–547. DOI 10.2307/1994580 | MR 0209503
[13] J. Král: Potential Theory I. State Pedagogic Publishing House, Praha 1965 (in Czech).
[14] J. Král, I. Netuka, J. Veselý: Potential Theory II. State Pedagogic Publishing House, Praha 1972 (in Czech).
[15] V. G. Maz’ja: Boundary Integral Equations, Analysis IV, Encyclopaedia of Mathematical Sciences vol. 27. Springer-Verlag, 1991.
[16] I. Netuka: Double layer potentials and the Dirichlet problem. Czech. Math. J. 24 (1974), 59–73. MR 0348127 | Zbl 0308.31008
[17] I. Netuka: Generalized Robin problem in potential theory. Czech. Math. J. 22 (1972), 312–324. MR 0294673 | Zbl 0241.31008
[18] I. Netuka: An operator connected with the third boundary value problem in potential theory. Czech. Math. J. 22 (1972), 462–489. MR 0316733 | Zbl 0241.31009
[19] I. Netuka: The third boundary value problem in potential theory. Czech. Math. J. 22 (1972), 554–580. MR 0313528 | Zbl 0242.31007
[20] J. M. Sloss: Global reflection for a class of simple closed curves. Pacific J. Math. 52 (1974), 247–260. DOI 10.2140/pjm.1974.52.247 | MR 0379807 | Zbl 0243.30004
[21] J. M. Sloss: The plane Dirichlet problem for certain multiply connected regions. J. Analyse Math. 28 (1975), 86–100. DOI 10.1007/BF02786808 | Zbl 0325.31004
[22] J. M. Sloss: A new integral equation for certain plane Dirichlet problems. SIAM J. Math. Anal. 6 (1975), 998–1006. DOI 10.1137/0506088 | MR 0437784 | Zbl 0323.35025
[23] J. M. Sloss, J. C. Bruch: Harmonic approximation with Dirichlet data on doubly connected regions. SIAM J. Numer. Anal. 14 (1977), 994–1005. DOI 10.1137/0714067 | MR 0478687
[24] F. Stummel: Diskrete Konvergenz linearen Operatoren I and II. Math. Zeitschr. 120 (1971), 231–264. DOI 10.1007/BF01117498 | MR 0291871
[25] W. L. Wendland: Boundary element methods and their asymptotic convergence. Lecture Notes of the CISM Summer-School on “Theoretical acoustic and numerical techniques”, Int. Centre Mech. Sci., Udine (Italy), P. Filippi (ed.), Springer-Verlag, Wien, New York, 1983, pp. 137–216. MR 0762829 | Zbl 0618.65109
Partner of
EuDML logo