[1] Ju. D. Burago, V. G. Maz’ja: Some problems of potential theory and theory of functions for domains with nonregular boundaries. Zapisky Naučnych Seminarov LOMI 3 (1967). (Russian)
[3] E. Dontová: Reflection and the Dirichlet and Neumann problems. Thesis, Prague, 1990. (Czech)
[4] E. Dontová:
Reflection and the Dirichlet problem on doubly connected regions. Časopis pro pěst. mat. 113 (1988), 122–147.
MR 0949040
[5] E. Dontová:
Reflection and the Neumann problem in doubly connected regions. Časopis pro pěst. mat. 113 (1988), 148–168.
MR 0949041
[6] Král J.:
Some inequalities concerning the cyclic and radial variations of a plane path-curve. Czechoslovak Math. J. 14 (89) (1964), 271–280.
MR 0180689
[7] Král J.:
On the logarithmic potential of the double distribution. Czechoslovak Math. J. 14 (89) (1964), 306–321.
MR 0180690
[8] Král J.:
Non-tangential limits of the logarithmic potential. Czechoslovak Math. J. 14 (89) (1964), 455–482.
MR 0180691
[9] J. Král:
The Fredholm radius of an operator in potential theory. Czechoslovak Math. J. 15 (1965), 454–473, 565–588.
MR 0190363
[10] J. Král:
Integral Operators in Potential Theory. Lecture Notes in Math. vol. 823, Springer-Verlag 1980.
MR 0590244
[11] J. Král:
Boundary regularity and normal derivatives of logarithmic potentials. Proc. of the Royal Soc. of Edinburgh 106A (1987), 241–258.
MR 0906210
[13] J. Král: Potential Theory I. State Pedagogic Publishing House, Praha 1965 (in Czech).
[14] J. Král, I. Netuka, J. Veselý: Potential Theory II. State Pedagogic Publishing House, Praha 1972 (in Czech).
[15] V. G. Maz’ja: Boundary Integral Equations, Analysis IV, Encyclopaedia of Mathematical Sciences vol. 27. Springer-Verlag, 1991.
[16] I. Netuka:
Double layer potentials and the Dirichlet problem. Czech. Math. J. 24 (1974), 59–73.
MR 0348127 |
Zbl 0308.31008
[17] I. Netuka:
Generalized Robin problem in potential theory. Czech. Math. J. 22 (1972), 312–324.
MR 0294673 |
Zbl 0241.31008
[18] I. Netuka:
An operator connected with the third boundary value problem in potential theory. Czech. Math. J. 22 (1972), 462–489.
MR 0316733 |
Zbl 0241.31009
[19] I. Netuka:
The third boundary value problem in potential theory. Czech. Math. J. 22 (1972), 554–580.
MR 0313528 |
Zbl 0242.31007
[23] J. M. Sloss, J. C. Bruch:
Harmonic approximation with Dirichlet data on doubly connected regions. SIAM J. Numer. Anal. 14 (1977), 994–1005.
DOI 10.1137/0714067 |
MR 0478687
[25] W. L. Wendland:
Boundary element methods and their asymptotic convergence. Lecture Notes of the CISM Summer-School on “Theoretical acoustic and numerical techniques”, Int. Centre Mech. Sci., Udine (Italy), P. Filippi (ed.), Springer-Verlag, Wien, New York, 1983, pp. 137–216.
MR 0762829 |
Zbl 0618.65109