Article
Keywords:
parameter identification; parabolic problem; finite element method; Crank-Nicolson scheme; least squares method; heat equation; inverse problem; error bounds
Summary:
The identification problem of a functional coefficient in a parabolic equation is considered. For this purpose an output least squares method is introduced, and estimates of the rate of convergence for the Crank-Nicolson time discretization scheme are proved, the equation being approximated with the finite element Galerkin method with respect to space variables.
References:
[1] S. C. Brenner and L. R. Scott:
The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. Springer-Verlag vol. 15, New York, 1994.
MR 1278258
[2] P. G. Ciarlet:
The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.
MR 0520174 |
Zbl 0383.65058
[3] J. Douglas, Jr. and T. Dupont:
Galerkin methods for parabolic equations with nonlinear boundary conditions. Numer. Math. 20 (1973), 213–237.
DOI 10.1007/BF01436565 |
MR 0319379
[4] G. Fairweather:
Finite Element Galerkin Methods for Differential Equations, Lecture notes in pure and applied mathematics vol. 34. Marcel Dekker, Inc., New York, 1978.
MR 0495013
[6] T. Kärkkäinen:
Error Estimates for Distributed Parameter Identification Problems. PhD thesis, University of Jyäskylä, Department of Mathematics, Report 65, 1995.
MR 1332491
[7] M. Luskin and R. Rannacher:
On the smoothing property of the Galerkin method for parabolic equations. SIAM J. Numer. Anal. 19 (1981), 93–113.
MR 0646596
[9] X.-C. Tai and T. Kärkkäinen:
Identification of a nonlinear parameter in a parabolic equation from a linear equation. Comp. Appl. Math. 14 (1995), 157–184.
MR 1364156
[10] V. Thomée:
Galerkin Finite Element Methods for Parabolic Problems, Lecture Notes in Mathematics vol. 1054. Springer-Verlag, Berlin Heidelberg, 1984.
MR 0744045
[11] M. F. Wheeler:
A priori $L^2$ error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10 (1973), 723–759.
DOI 10.1137/0710062 |
MR 0351124