Previous |  Up |  Next

Article

Keywords:
parameter identification; parabolic problem; finite element method; Crank-Nicolson scheme; least squares method; heat equation; inverse problem; error bounds
Summary:
The identification problem of a functional coefficient in a parabolic equation is considered. For this purpose an output least squares method is introduced, and estimates of the rate of convergence for the Crank-Nicolson time discretization scheme are proved, the equation being approximated with the finite element Galerkin method with respect to space variables.
References:
[1] S. C. Brenner and L. R. Scott: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. Springer-Verlag vol. 15, New York, 1994. MR 1278258
[2] P. G. Ciarlet: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978. MR 0520174 | Zbl 0383.65058
[3] J. Douglas, Jr. and T. Dupont: Galerkin methods for parabolic equations with nonlinear boundary conditions. Numer. Math. 20 (1973), 213–237. DOI 10.1007/BF01436565 | MR 0319379
[4] G. Fairweather: Finite Element Galerkin Methods for Differential Equations, Lecture notes in pure and applied mathematics vol. 34. Marcel Dekker, Inc., New York, 1978. MR 0495013
[5] R. S. Falk: Error estimates for the numerical identification of a variable coefficient. Math. Comp. 40 (1983), 537–546. DOI 10.1090/S0025-5718-1983-0689469-3 | MR 0689469 | Zbl 0551.65083
[6] T. Kärkkäinen: Error Estimates for Distributed Parameter Identification Problems. PhD thesis, University of Jyäskylä, Department of Mathematics, Report 65, 1995. MR 1332491
[7] M. Luskin and R. Rannacher: On the smoothing property of the Galerkin method for parabolic equations. SIAM J. Numer. Anal. 19 (1981), 93–113. MR 0646596
[8] R. Scott: Interpolated boundary conditions in the finite element method. SIAM J. Numer. Anal. 12 (1975), 404–427. DOI 10.1137/0712032 | MR 0386304 | Zbl 0357.65082
[9] X.-C. Tai and T. Kärkkäinen: Identification of a nonlinear parameter in a parabolic equation from a linear equation. Comp. Appl. Math. 14 (1995), 157–184. MR 1364156
[10] V. Thomée: Galerkin Finite Element Methods for Parabolic Problems, Lecture Notes in Mathematics vol. 1054. Springer-Verlag, Berlin Heidelberg, 1984. MR 0744045
[11] M. F. Wheeler: A priori $L^2$ error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10 (1973), 723–759. DOI 10.1137/0710062 | MR 0351124
Partner of
EuDML logo