[1] K. Chrobáček, F. Melkes, L. Rak: Stationary magnetic field computation of electrical machines. TES 1977, theoretical number, 22–29. (Czech)
[2] P.G. Ciarlet:
The Finite Element Method for Elliptic Problems. North-Holland, Amsterodam, 1978.
MR 0520174 |
Zbl 0383.65058
[3] E.A. Erdelyi, E.F. Fuchs, (D.H. Binkley): Nonlinear magnetic field analysis of DC machines I, II, III. IEEE Trans., PAS-89 (1970), 7, 1546–1583.
[4] A. Foggia, J.C. Sabonnadière, P. Silvester: Finite element solution of saturated travelling magnetic field problems. IEEE Trans., PAS-94 (1975), 866–871.
[5] Glowinski, A. Marrocco:
Analyse numerique du champ magnetique d’un alternateur par elements finis et sur-relaxation ponctuelle non lineaire. Comput. Methods Appl. Mech. Engrg. 3 (1974), 55–85.
DOI 10.1016/0045-7825(74)90042-5 |
MR 0413547
[6] B. Lencová, M. Lenc: A finite element method for the computation of magnetic electron lenses. Scanning Electron Microscopy 1986/III, SEM Inc., AMF O’Hare, Chicago, 1986, pp. 897–915.
[7] F. Melkes: Solving the magnetic field by the finite element method. PhD. Thesis, Czechoslovak Academy of Sciences, Prague, 1970. (Czech—see also report of VÚES Brno, TZ 1481)
[8] F. Melkes:
The finite element method for non-linear problems. Apl. Mat. 15 (1970), 177–189.
MR 0259695 |
Zbl 0209.17201
[9] F. Melkes: Magnetic energy computation using piecewise linear approximations. Acta Tech. ČSAV (1990), 365–373.
[10] J. Polák: Variational Principles and Methods of Electromagnetic Theory. Academia, Prague, 1988. (Czech)
[11] H. Reiche: Die Ermittlung stationärer magnetischer Felder in elektrischen Maschinen. IX. Internat. Kolloquium TH, Ilmenau, 1966.
[12] P. Silvester, H.S. Cabayan, B.T. Browne: Efficient techniques for finite element analysis of electric machines. IEEE Trans., PAS-92 (1973), 1274–1281.
[13] H. Tsuboi, F. Kobayashi, T. Misaki: Two-dimensional magnetic field analysis using edge elements. Proc. of the Third Japanese-Czech-Slovak Joint Seminar on Applied Electromagnetics, Prague, 1995, pp. 53–56.
[14] A.M. Winslow:
Numerical solution of the quasilinear Poisson equation in a non-uniform triangle mesh. LRL Livermore California, 1967, pp. 149–172.
MR 0241008
[15] A. Ženíšek:
The maximum angle condition in the finite element method for monotone problems with applications in magnetostatics. Numer. Math. 71 (1995), 399–417.
DOI 10.1007/s002110050151 |
MR 1347576