[1] M. Bocher: Introduction to Higher Algebra. New York, McMillan, 1947.
[2] J. Dieudonné:
Foundations of Modern Analysis. New York, Academic Press, 1960.
MR 0120319
[3] N. Dunford, J. Schwartz: Linear Operators, Part I. New York, Interscience, 1957.
[5] G. Golub, C.F. Van Loan:
Matrix Computations. Baltimore, John Hopkins Univ. Press, 1983.
MR 0733103
[6] A. Graham:
Kronecker Products and Matrix Calculus with Applications. New York, John Wiley, 1981.
MR 0640865 |
Zbl 0497.26005
[7] P. Henrici:
Discrete Variable Methods in Ordinary Differential Equations. New York, John Wiley, 1962.
MR 0135729 |
Zbl 0112.34901
[9] L. Jódar, E. Ponsoda:
Non-autonomous Riccati type matrix differential equations: existence interval, construction of continuous numerical solutions and error bounds. IMA J. Numer. Anal. 15 (1995), 61–74.
DOI 10.1093/imanum/15.1.61 |
MR 1311337
[10] J.D. Lambert:
Computational Methods in Ordinary Differential Equations. New York, John Wiley, 1962.
MR 0423815
[11] P. Lancaster, M. Tismenetsky:
The Theory of Matrices. 2nd. ed. New York, Academic Press, 1985.
MR 0792300
[12] P.Chr. Müller:
Solution of the matrix equations $AX+XB=-Q$ and $S^TX+XS=-Q$. SIAM J. Appl. Math. 18 (1970), no. 3, 682–687.
DOI 10.1137/0118061 |
MR 0260158
[14] W.J. Vetter:
Derivative operations on matrices. IEEE Trans. Aut. Control. AC-15 (1970), 241–244.
MR 0272801
[15] S. Wolfram: Mathematica, a System for Doing Mathematics by Computer. Redwood City, Addison Wesley Publishing Co., 1989.